skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite

Abstract

The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg 2+, the substrates’ (001) surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D) structure can affect the orientation of calcite nucleation with calcite (001) ~// mica (001) and calcite (010) ~// mica (010) to be the major interfacial relationship. On hematite, we did not observe frequent twinning relationship between adjacent calcite gains, but often saw preferentially nucleation of calcite at surface steps on hematite substrate. We suggest that calcite crystals initially nucleate from the Ca 2+ layers adsorbed on the surfaces. The pseudo-hexagonal symmetry on mica (001) surface also leads to the observed calcite (001) twinning. A second and less common orientation between calcite {104} and mica (001) was detected but could be due to local structure damage of the mica surface. Results in the presence of Mg 2+ show that the substrate surfaces can weaken Mg toxicity to calcite nucleation and lead to a higher level of Mg incorporation into calcite lattice.

Authors:
 [1];  [1];  [1];  [2]
  1. Univ. of Wisconsin, Madison, WI (United States). NASA Astrobiology Inst. Dept. of Geoscience
  2. George Washington Univ., Washington, DC (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); National Aeronautic and Space Administration (NASA)
OSTI Identifier:
1505152
Grant/Contract Number:  
SC0001929; FG02-09ER16050; NNA13AA94A
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Minerals
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2075-163X
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 36 MATERIALS SCIENCE; calcite; high-magnesian calcite; mica; hematite; clay minerals; substrate effect; heterogeneous nucleation; twinning; EBSD

Citation Formats

Xu, Huifang, Zhou, Mo, Fang, Yihang, and Teng, H. Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite. United States: N. p., 2018. Web. doi:10.3390/min8010017.
Xu, Huifang, Zhou, Mo, Fang, Yihang, & Teng, H. Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite. United States. doi:10.3390/min8010017.
Xu, Huifang, Zhou, Mo, Fang, Yihang, and Teng, H. Fri . "Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite". United States. doi:10.3390/min8010017. https://www.osti.gov/servlets/purl/1505152.
@article{osti_1505152,
title = {Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite},
author = {Xu, Huifang and Zhou, Mo and Fang, Yihang and Teng, H.},
abstractNote = {The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg2+, the substrates’ (001) surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D) structure can affect the orientation of calcite nucleation with calcite (001) ~// mica (001) and calcite (010) ~// mica (010) to be the major interfacial relationship. On hematite, we did not observe frequent twinning relationship between adjacent calcite gains, but often saw preferentially nucleation of calcite at surface steps on hematite substrate. We suggest that calcite crystals initially nucleate from the Ca2+ layers adsorbed on the surfaces. The pseudo-hexagonal symmetry on mica (001) surface also leads to the observed calcite (001) twinning. A second and less common orientation between calcite {104} and mica (001) was detected but could be due to local structure damage of the mica surface. Results in the presence of Mg2+ show that the substrate surfaces can weaken Mg toxicity to calcite nucleation and lead to a higher level of Mg incorporation into calcite lattice.},
doi = {10.3390/min8010017},
journal = {Minerals},
issn = {2075-163X},
number = 1,
volume = 8,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Illustration diagram of free-drift experiment. Figure 1. Illustration diagram of free-drift experiment.

Save / Share:

Works referenced in this record:

Carbon Dioxide Sequestering Using Ultramaf ic Rocks
journal, September 1998


In situ AFM observations of Ca–Mg carbonate crystallization catalyzed by dissolved sulfide: Implications for sedimentary dolomite formation
journal, March 2013


Microbial Lithotrophic Oxidation of Structural Fe(II) in Biotite
journal, June 2012

  • Shelobolina, Evgenya; Xu, Huifang; Konishi, Hiromi
  • Applied and Environmental Microbiology, Vol. 78, Issue 16
  • DOI: 10.1128/AEM.01034-12

Implications of solution chemistry effects: Direction-specific restraints on the step kinetics of calcite growth
journal, September 2014


A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization
journal, May 1987

  • Addadi, L.; Moradian, J.; Shay, E.
  • Proceedings of the National Academy of Sciences, Vol. 84, Issue 9
  • DOI: 10.1073/pnas.84.9.2732

Relationship between surface structure, growth mechanism, and trace element incorporation in calcite
journal, February 1995


Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater
journal, January 1997


Epitaxy of Calcite on Mica
journal, February 2010

  • Stephens, Christopher J.; Mouhamad, Youmna; Meldrum, Fiona C.
  • Crystal Growth & Design, Vol. 10, Issue 2
  • DOI: 10.1021/cg901130a

The role of magnesium in the crystal growth of calcite and aragonite from sea water
journal, April 1975


Growth ordering and anomalous birefringence in ugrandite garnets
journal, August 2005

  • Shtukenberg, A. G.; Popov, D. Yu.; Punin, Yu. O.
  • Mineralogical Magazine, Vol. 69, Issue 4
  • DOI: 10.1180/0026461056940269

Calcite growth: Rate dependence on saturation, on ratios of dissolved calcium and (bi)carbonate and on their complexes
journal, May 2014


Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (Tufas)
journal, May 1994


Aligned Growth of Calcite Crystals on a Self-Assembled Monolayer
journal, April 2002


The role of magnesium in the growth of calcite: An AFM study
journal, March 2010


Control of Calcite Crystal Morphology by a Peptide Designed To Bind to a Specific Surface
journal, November 1997

  • DeOliveira, Daniel B.; Laursen, Richard A.
  • Journal of the American Chemical Society, Vol. 119, Issue 44
  • DOI: 10.1021/ja972270w

Adhesion and surface energy of mica in air and water
journal, November 1993

  • Christenson, H. K.
  • The Journal of Physical Chemistry, Vol. 97, Issue 46
  • DOI: 10.1021/j100148a032

Calcite Growth Kinetics: Dependence on Saturation Index, Ca 2+ :CO 3 2– Activity Ratio, and Surface Atomic Structure
journal, May 2016

  • Sand, K. K.; Tobler, D. J.; Dobberschütz, S.
  • Crystal Growth & Design, Vol. 16, Issue 7
  • DOI: 10.1021/acs.cgd.5b01792

Control of crystal phase switching and orientation by soluble mollusc-shell proteins
journal, May 1996

  • Belcher, A. M.; Wu, X. H.; Christensen, R. J.
  • Nature, Vol. 381, Issue 6577
  • DOI: 10.1038/381056a0

Effects of Surface Ions on the Friction and Adhesion Properties of Mica
journal, April 1998


Mechanism of tremolite carbonation
journal, July 2011


Crystal growth of calcium phosphates - epitaxial considerations
journal, May 1981


Control of crystal nucleation by patterned self-assembled monolayers
journal, April 1999

  • Aizenberg, Joanna; Black, Andrew J.; Whitesides, George M.
  • Nature, Vol. 398, Issue 6727
  • DOI: 10.1038/19047

Effect of Magnesium Ions on Oriented Growth of Calcite on Carboxylic Acid Functionalized Self-Assembled Monolayer
journal, April 2003

  • Han, Yong-Jin; Aizenberg, Joanna
  • Journal of the American Chemical Society, Vol. 125, Issue 14
  • DOI: 10.1021/ja034094z

The crystallization of calcium carbonate
journal, August 1976


Effect of orthophosphate on the dissolution kinetics of biogenic magnesian calcites
journal, August 1979


Crystallization of calcium carbonate in presence of magnesium and polyelectrolytes
journal, April 1994


A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series
journal, November 2010

  • Zhang, F.; Xu, H.; Konishi, H.
  • American Mineralogist, Vol. 95, Issue 11-12
  • DOI: 10.2138/am.2010.3414

In-vitro Crystallization of Calcium Carbonate in the Presence of Biological Additives— Comparison of the Ammonium Carbonate Method with Double-Diffusion Techniques
journal, January 2003

  • Becker, Alexander; Becker, Wilhelm; Marxen, Julia C.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 629, Issue 1213
  • DOI: 10.1002/zaac.200300229

AFM Investigation for the Initial Growth Processes of Calcium Carbonate on Hydrophilic and Hydrophobic Substrate
journal, July 2009

  • Yamanaka, Shinya; Ito, Nobuhiro; Shimosaka, Atsuko
  • Crystal Growth & Design, Vol. 9, Issue 7
  • DOI: 10.1021/cg801334g

Chemical, mineralogical and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25°C
journal, October 2001


Formation of High-Magnesian Calcites via an Amorphous Precursor Phase: Possible Biological Implications
journal, January 2000


Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements
journal, September 1994


Influence of <mml:math altimg="si52.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mrow><mml:mi>Mg</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> on <mml:math altimg="si53.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow><mml:mi>CaCO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math> formation—bulk precipitation and surface deposition
journal, August 2006


Crystallization of calcium carbonate in the presence of metal ions
journal, October 1980


Observations on the Solubility of Skeletal Carbonates in Aqueous Solutions
journal, July 1962


Kinetics of calcite growth: surface processes and relationships to macroscopic rate laws
journal, July 2000