skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Near-Infrared Light Trapping in Disordered Inverse Opals

Journal Article · · Journal of Physical Chemistry. C
DOI:https://doi.org/10.1021/jp202407y· OSTI ID:1503803
 [1];  [1];  [1];  [1]
  1. Chemical and Materials Science Center and ‡National Center for Photovoltaics, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401, United States

We show that the optical properties of CdSe inverse opal films prepared from electrodeposition within the pore space of self-assembled polystyrene bead colloidal crystal templates are highly dependent upon both the pore size (300, 400, or 500 nm) and the degree of disorder within the film. These features cause a significant amount of infrared light (from 800-1300 nm) to undergo multiplescattering events and become trapped within the film. The disordered 500 nm pore size inverse opal is shown to effect the greatest near-infrared light scattering, which increases the path length of light by a factor of ~10, approaching the theoretical limit. Light trapping over a wide portion of the near-infrared region, driven by both the randomly disordered pore structure and the highrefractive index contrast present in the CdSe inverse opal architecture, was demonstrated for the first time and can potentially be used to manipulate the absorption and emission properties in a range of optoelectronic materials.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1503803
Report Number(s):
NREL/JA-5900-49876
Journal Information:
Journal of Physical Chemistry. C, Vol. 115, Issue 29; ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English