skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries

Abstract

Layered cathode materials (LCMs), because of their high energy density and relatively stable performance, represent an important class of cathode materials for alkali metal ion ( e.g., Li + and Na +) batteries. Chemomechanical behaviors of LCMs, which affect battery performance dramatically, have drawn extensive attention in recent years. Most chemomechanical processes have some common chemical and structural origins that are at the center of materials chemistry, for example, defects and local bonding environments in the solid state. In this review, we first discuss the chemomechanical breakdown of LCMs by introducing their categories and negative effects on the battery performance. We then systematically analyze factors that govern the initiation and propagation of chemomechanical breakdown and summarize their formation mechanisms. Strategies that can enhance the chemomechanical properties of LCMs or reduce the destructive effects of chemomechanical breakdown are then discussed. Lastly, light is shed on the new state-of-the-art techniques that have been applied to study chemomechanical breakdown. This review virtually includes most aspects of the chemomechanical behaviors of LCMs and provides some insights into the important chemical motifs that determine the chemomechanical properties. Thus, we believe that advanced design protocols of LCMs can be developed to effectively address the chemomechanical breakdownmore » issue of LCMs.« less

Authors:
 [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  2. SLAC National Accelerator Lab. (SLAC), Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab. (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1503597
Alternate Identifier(s):
OSTI ID: 1478433
Grant/Contract Number:  
DMR-1832613; AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 6; Journal Issue: 44; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE

Citation Formats

Xu, Zhengrui, Rahman, Muhammad Mominur, Mu, Linqin, Liu, Yijin, and Lin, Feng. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries. United States: N. p., 2018. Web. doi:10.1039/c8ta06875e.
Xu, Zhengrui, Rahman, Muhammad Mominur, Mu, Linqin, Liu, Yijin, & Lin, Feng. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries. United States. doi:10.1039/c8ta06875e.
Xu, Zhengrui, Rahman, Muhammad Mominur, Mu, Linqin, Liu, Yijin, and Lin, Feng. Mon . "Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries". United States. doi:10.1039/c8ta06875e.
@article{osti_1503597,
title = {Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries},
author = {Xu, Zhengrui and Rahman, Muhammad Mominur and Mu, Linqin and Liu, Yijin and Lin, Feng},
abstractNote = {Layered cathode materials (LCMs), because of their high energy density and relatively stable performance, represent an important class of cathode materials for alkali metal ion (e.g., Li+ and Na+) batteries. Chemomechanical behaviors of LCMs, which affect battery performance dramatically, have drawn extensive attention in recent years. Most chemomechanical processes have some common chemical and structural origins that are at the center of materials chemistry, for example, defects and local bonding environments in the solid state. In this review, we first discuss the chemomechanical breakdown of LCMs by introducing their categories and negative effects on the battery performance. We then systematically analyze factors that govern the initiation and propagation of chemomechanical breakdown and summarize their formation mechanisms. Strategies that can enhance the chemomechanical properties of LCMs or reduce the destructive effects of chemomechanical breakdown are then discussed. Lastly, light is shed on the new state-of-the-art techniques that have been applied to study chemomechanical breakdown. This review virtually includes most aspects of the chemomechanical behaviors of LCMs and provides some insights into the important chemical motifs that determine the chemomechanical properties. Thus, we believe that advanced design protocols of LCMs can be developed to effectively address the chemomechanical breakdown issue of LCMs.},
doi = {10.1039/c8ta06875e},
journal = {Journal of Materials Chemistry. A},
issn = {2050-7488},
number = 44,
volume = 6,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 22, 2019
Publisher's Version of Record

Save / Share:

Works referenced in this record:

A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications
journal, September 2006

  • Mor, Gopal K.; Varghese, Oomman K.; Paulose, Maggie
  • Solar Energy Materials and Solar Cells, Vol. 90, Issue 14, p. 2011-2075
  • DOI: 10.1016/j.solmat.2006.04.007

Dissolution of Spinel Oxides and Capacity Losses in 4V?Li?/?LixMn2O4 Cells
journal, January 1996

  • Jang, Dong H.; Shin, Young J.; Oh, Seung M.
  • Journal of The Electrochemical Society, Vol. 143, Issue 7, p. 2204-2211
  • DOI: 10.1149/1.1836981

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Role of surface coating on cathode materials for lithium-ion batteries
journal, January 2010

  • Chen, Zonghai; Qin, Yan; Amine, Khalil
  • Journal of Materials Chemistry, Vol. 20, Issue 36, p. 7606-7612
  • DOI: 10.1039/c0jm00154f

Design criteria for electrochemical shock resistant battery electrodes
journal, January 2012

  • Woodford, William H.; Carter, W. Craig; Chiang, Yet-Ming
  • Energy & Environmental Science, Vol. 5, Issue 7, p. 8014-8024
  • DOI: 10.1039/c2ee21874g

AlF3-Coating to Improve High Voltage Cycling Performance of Li[Ni1?3]Co1?3]Mn1?3]O2 Cathode Materials for Lithium Secondary Batteries
journal, January 2007

  • Sun, Y.-K.; Cho, S.-W.; Lee, S.-W.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3, p. A168-A172
  • DOI: 10.1149/1.2422890

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2
journal, January 2010


Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques
journal, September 1999


A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment
journal, August 2008


Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries
journal, February 2008

  • Hu, Yong-Sheng; Demir-Cakan, Rezan; Titirici, Maria-Magdalena
  • Angewandte Chemie International Edition, Vol. 47, Issue 9, p. 1645-1649
  • DOI: 10.1002/anie.200704287

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
journal, January 1998

  • Arora, Pankaj; White, Ralph E.; Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 145, Issue 10, p. 3647-3667
  • DOI: 10.1149/1.1838857

Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

A review on electrolyte additives for lithium-ion batteries
journal, November 2006


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a