skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Water-Processable P2-Na 0.67Ni 0.22Cu 0.11Mn 0.56Ti 0.11O 2 Cathode Material for Sodium Ion Batteries

Abstract

Sodium ion batteries offer a low-cost, sustainable, and environment-friendly solution to large-scale electrochemical energy storage systems. Layered oxides represent a family of promising cathode materials with a potential to improve the energy and power densities while reducing the material cost of sodium ion batteries. However, due to the chemical and structural instability of layered oxides in an aqueous solution, the current battery electrode manufacturing requires expensive and hazardous organic solvents, which impedes the full benefit of the low-cost, sustainable, and eco-friendly advantages. We need an effective technology that empowers a cathode with water processable properties. In this study, we set a representative example, P2-Na 0.67Ni 0.22Cu 0.11Mn 0.56Ti 0.11O 2, to explore its performance under water-processing conditions. This material achieves a discharge capacity of 180 mAh/g and a discharge energy of 544 Wh/kg at 22°C. The aging experiments indicate its superior stability against water, having negligible bulk structural or chemical changes. The surface sensitive soft X-ray absorption spectroscopy shows that the P2-Na 0.67Ni 0.22Cu 0.11Mn 0.56Ti 0.11O 2 has stable surface chemistry in the aqueous solution. Moreover, the cells with water-processed cathodes delivered stable cycling performance with minor voltage decay, originating from the decreased cell impedance. Furthermore, the present studymore » sets a refined example to establish a low-cost, sustainable, and eco-friendly solution by developing water-processable electrode materials for sodium ion batteries.« less

Authors:
 [1];  [1];  [2];  [3];  [1];  [1];  [4];  [5];  [2];  [6]; ORCiD logo [1]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Tianjin Univ., Tianjin (People's Republic of China); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Neuqua Valley High School, Naperville, IL (United States)
  5. Tianjin Univ., Tianjin (People's Republic of China)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1503410
Alternate Identifier(s):
OSTI ID: 1501529
Report Number(s):
PNNL-SA-140657
Journal ID: ISSN 0013-4651
Grant/Contract Number:  
AC02-76SF00515; AC05-76RL01830
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 166; Journal Issue: 2; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; layered oxide; structural stability; water-processable; water-processable, substitution, layered oxide, structural stability, sodium battery

Citation Formats

Mu, Linqin, Hou, Qingping, Yang, Zhenzhong, Zhang, Yan, Rahman, Muhammad Mominur, Kautz, David J., Sun, Elaine, Du, Xi -Wen, Du, Yingge, Nordlund, Dennis, and Lin, Feng. Water-Processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 Cathode Material for Sodium Ion Batteries. United States: N. p., 2019. Web. doi:10.1149/2.0881902jes.
Mu, Linqin, Hou, Qingping, Yang, Zhenzhong, Zhang, Yan, Rahman, Muhammad Mominur, Kautz, David J., Sun, Elaine, Du, Xi -Wen, Du, Yingge, Nordlund, Dennis, & Lin, Feng. Water-Processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 Cathode Material for Sodium Ion Batteries. United States. doi:10.1149/2.0881902jes.
Mu, Linqin, Hou, Qingping, Yang, Zhenzhong, Zhang, Yan, Rahman, Muhammad Mominur, Kautz, David J., Sun, Elaine, Du, Xi -Wen, Du, Yingge, Nordlund, Dennis, and Lin, Feng. Fri . "Water-Processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 Cathode Material for Sodium Ion Batteries". United States. doi:10.1149/2.0881902jes. https://www.osti.gov/servlets/purl/1503410.
@article{osti_1503410,
title = {Water-Processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 Cathode Material for Sodium Ion Batteries},
author = {Mu, Linqin and Hou, Qingping and Yang, Zhenzhong and Zhang, Yan and Rahman, Muhammad Mominur and Kautz, David J. and Sun, Elaine and Du, Xi -Wen and Du, Yingge and Nordlund, Dennis and Lin, Feng},
abstractNote = {Sodium ion batteries offer a low-cost, sustainable, and environment-friendly solution to large-scale electrochemical energy storage systems. Layered oxides represent a family of promising cathode materials with a potential to improve the energy and power densities while reducing the material cost of sodium ion batteries. However, due to the chemical and structural instability of layered oxides in an aqueous solution, the current battery electrode manufacturing requires expensive and hazardous organic solvents, which impedes the full benefit of the low-cost, sustainable, and eco-friendly advantages. We need an effective technology that empowers a cathode with water processable properties. In this study, we set a representative example, P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2, to explore its performance under water-processing conditions. This material achieves a discharge capacity of 180 mAh/g and a discharge energy of 544 Wh/kg at 22°C. The aging experiments indicate its superior stability against water, having negligible bulk structural or chemical changes. The surface sensitive soft X-ray absorption spectroscopy shows that the P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 has stable surface chemistry in the aqueous solution. Moreover, the cells with water-processed cathodes delivered stable cycling performance with minor voltage decay, originating from the decreased cell impedance. Furthermore, the present study sets a refined example to establish a low-cost, sustainable, and eco-friendly solution by developing water-processable electrode materials for sodium ion batteries.},
doi = {10.1149/2.0881902jes},
journal = {Journal of the Electrochemical Society},
issn = {0013-4651},
number = 2,
volume = 166,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Phase transition induced cracking plaguing layered cathode for sodium-ion battery
journal, December 2018


A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries
journal, January 2015

  • Han, Man Huon; Gonzalo, Elena; Singh, Gurpreet
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE03192J

Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries
journal, September 2017


Suppressing the P2-O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries
journal, May 2016

  • Wang, Peng-Fei; You, Ya; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201602202

Sodium and Sodium-Ion Batteries: 50 Years of Research
journal, February 2018


Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode
journal, October 2015


Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries
journal, January 2018

  • Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan
  • Journal of Materials Chemistry A, Vol. 6, Issue 6
  • DOI: 10.1039/C7TA08410B

Cation Ordering in Layered O3 Li[Ni x Li 1/3 - 2 x /3 Mn 2/ 3 - x /3 ]O 2 (0 ≤ x1 / 2 ) Compounds
journal, May 2005

  • Meng, Y. S.; Ceder, G.; Grey, C. P.
  • Chemistry of Materials, Vol. 17, Issue 9
  • DOI: 10.1021/cm047779m

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Intercalation of Water in P2, T2 and O2 Structure A z [Co x Ni 1/3- x Mn 2/3 ]O 2
journal, April 2001

  • Lu, Zhonghua; Dahn, J. R.
  • Chemistry of Materials, Vol. 13, Issue 4
  • DOI: 10.1021/cm000721x

P2-type Na 2/3 Ni 1/3 Mn 2/3−x Ti x O 2 as a new positive electrode for higher energy Na-ion batteries
journal, January 2014

  • Yoshida, Hiroaki; Yabuuchi, Naoaki; Kubota, Kei
  • Chem. Commun., Vol. 50, Issue 28
  • DOI: 10.1039/C3CC49856E

Moisture exposed layered oxide electrodes as Na-ion battery cathodes
journal, January 2016

  • Han, M. H.; Sharma, N.; Gonzalo, E.
  • Journal of Materials Chemistry A, Vol. 4, Issue 48
  • DOI: 10.1039/C6TA07950D

Advanced Characterization Techniques for Sodium-Ion Battery Studies
journal, February 2018

  • Shadike, Zulipiya; Zhao, Enyue; Zhou, Yong-Ning
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201702588

P2-type Na 0.66 Ni 0.33–x Zn x Mn 0.67 O 2 as new high-voltage cathode materials for sodium-ion batteries
journal, May 2015


Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries
journal, September 2015


High Voltage Mg-Doped Na 0.67 Ni 0.3– x Mg x Mn 0.7 O 2 ( x = 0.05, 0.1) Na-Ion Cathodes with Enhanced Stability and Rate Capability
journal, July 2016


In Situ X-Ray Diffraction Study of P2-Na[sub 2/3][Ni[sub 1/3]Mn[sub 2/3]]O[sub 2]
journal, January 2001

  • Lu, Zhonghua; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 11
  • DOI: 10.1149/1.1407247

Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities
journal, January 2018

  • Rahman, Muhammad Mominur; Xu, Yahong; Cheng, Hao
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/C8EE00309B

Porous Graphene Sponge Additives for Lithium Ion Batteries with Excellent Rate Capability
journal, April 2017


Environmentally stable interface of layered oxide cathodes for sodium-ion batteries
journal, July 2017


Large-Scale Synthesis of NaNi 1/3 Fe 1/3 Mn 1/3 O 2 as High Performance Cathode Materials for Sodium Ion Batteries
journal, January 2016

  • Wang, Hong; Liao, Xiao-Zhen; Yang, Yang
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0011605jes

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
journal, September 2011


Uptake of CO 2 in Layered P2-Na 0.67 Mn 0.5 Fe 0.5 O 2 : Insertion of Carbonate Anions
journal, March 2015


Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application
journal, January 2012


An advanced cathode for Na-ion batteries with high rate and excellent structural stability
journal, January 2013

  • Lee, Dae Hoe; Xu, Jing; Meng, Ying Shirley
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 9
  • DOI: 10.1039/c2cp44467d

Na + /vacancy disordering promises high-rate Na-ion batteries
journal, March 2018


Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers
journal, January 2018

  • Bresser, Dominic; Buchholz, Daniel; Moretti, Arianna
  • Energy & Environmental Science, Vol. 11, Issue 11
  • DOI: 10.1039/C8EE00640G

Communication—O3-Type Layered Oxide with a Quaternary Transition Metal Composition for Na-Ion Battery Cathodes: NaTi 0.25 Fe 0.25 Co 0.25 Ni 0.25 O 2
journal, January 2017

  • Vassilaras, Plousia; Dacek, Stephen T.; Kim, Haegyeom
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0271714jes

Water sensitivity of layered P2/P3-Na x Ni 0.22 Co 0.11 Mn 0.66 O 2 cathode material
journal, January 2014

  • Buchholz, Daniel; Chagas, Luciana Gomes; Vaalma, Christoph
  • J. Mater. Chem. A, Vol. 2, Issue 33
  • DOI: 10.1039/C4TA02627F

Layered oxides as positive electrode materials for Na-ion batteries
journal, May 2014

  • Kubota, Kei; Yabuuchi, Naoaki; Yoshida, Hiroaki
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.85

Sodium-Alginate-Based Binders for Lithium-Rich Cathode Materials in Lithium-Ion Batteries to Suppress Voltage and Capacity Fading
journal, March 2018


Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
journal, January 2014

  • Lin, Feng; Nordlund, Dennis; Markus, Isaac M.
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01400F

Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO 2 as High-Performance Anode in Sodium Ion Batteries
journal, January 2018

  • Ling, Liming; Bai, Ying; Wang, Zhaohua
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 6
  • DOI: 10.1021/acsami.7b17659

Structural classification and properties of the layered oxides
journal, January 1980


Air-Stable Copper-Based P2-Na 7/9 Cu 2/9 Fe 1/9 Mn 2/3 O 2 as a New Positive Electrode Material for Sodium-Ion Batteries
journal, May 2015


Deciphering the Cathode-Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials
journal, October 2018


EIS study on the formation of solid electrolyte interface in Li-ion battery
journal, January 2006


    Works referencing / citing this record:

    Understanding Challenges of Cathode Materials for Sodium‐Ion Batteries using Synchrotron‐Based X‐Ray Absorption Spectroscopy
    journal, July 2019

    • Chen, Mingzhe; Chou, Shu‐Lei; Dou, Shi‐Xue
    • Batteries & Supercaps, Vol. 2, Issue 10
    • DOI: 10.1002/batt.201900054

    Understanding Challenges of Cathode Materials for Sodium‐Ion Batteries using Synchrotron‐Based X‐Ray Absorption Spectroscopy
    journal, July 2019

    • Chen, Mingzhe; Chou, Shu‐Lei; Dou, Shi‐Xue
    • Batteries & Supercaps, Vol. 2, Issue 10
    • DOI: 10.1002/batt.201900054