skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

Abstract

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments --- as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER --- to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. Themore » work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.« less

Authors:
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1502824
Report Number(s):
FERMILAB-PUB-19-110-CD-PPD; arXiv:1903.04497
1724682
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Journal Article
Journal Name:
TBD
Additional Journal Information:
Journal Name: TBD
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Alimena, Juliette, and et al. Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider. United States: N. p., 2019. Web.
Alimena, Juliette, & et al. Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider. United States.
Alimena, Juliette, and et al. Mon . "Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider". United States. https://www.osti.gov/servlets/purl/1502824.
@article{osti_1502824,
title = {Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider},
author = {Alimena, Juliette and et al.},
abstractNote = {Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments --- as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER --- to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.},
doi = {},
journal = {TBD},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {3}
}