skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-Induced Damage of Calcium Fluoride

Journal Article · · Journal of Undergraduate Research
OSTI ID:15020718

Radiation damage of materials has long been of fundamental interest, especially since the growth of laser technology. One such source of damage comes from UV laser light. Laser systems continue to move into shorter wavelength ranges, but unfortunately are limited by the damage threshold of their optical components. For example, semiconductor lithography is making its way into the 157nm range and requires a material that can not only transmit this light (air cannot), but also withstand the highly energetic photons present at this shorter wavelength. CaF2, an alkaline earth halide, is the chosen material for vacuum UV 157 nm excimer radiation. It can transmit light down to 120 nm and is relatively inexpensive. Although it is readily available through natural and synthetic sources, it is often times difficult to find in high purity. Impurities in the crystal can result in occupied states in the band gap that induce photon absorption [2] and ultimately lead to the degradation of the material. In order to predict how well CaF2 will perform under irradiation of short wavelength laser light, one must understand the mechanisms for laser-induced damage. Laser damage is often a two-step process: initial photons create new defects in the lattice and subsequent photons excite these defects. When laser light is incident on a solid surface there is an initial production of electron-hole (e-h) pairs, a heating of free electrons and a generation of local heating around optically absorbing centers [3]. Once this initial excitation converts to the driving energy for nuclear motion, the result is an ejection of atoms, ions and molecules from the surface, known as desorption or ablation [3]. Secondary processes further driving desorption are photoabsorption, successive excitations of self-trapped excitons (STE's) and defects, and ionization of neutrals by incident laser light [3]. The combination of laser-induced desorption and the alterations to the electronic and geometrical structure of the lattice result in defect formation. In the material CaF2 some of these defects take the form of F-centers, an electron trapped at a halogen vacancy [4], and H-centers, a F2- molecular ion at a single lattice site [5]. While the F-centers are stable, the H-centers are transient but can form into aggregates that are stable. There are many different configurations the defects can take based on the relative position of F and H centers in the lattice and this is extensively discussed in literature [1,4,5]. Once these defects have formed they cause further absorption of light, which ultimately induces particle emission and the production of even more defects. Various forms of laser-induced damage of CaF2 have been studied. For example, the mechanism for photon-stimulated desorption (PSD) of F+ from CaF2 (111) is discussed in ref. 6 and the energy threshold, distribution and kinetics governing electron-stimulated desorption (ESD) is investigated in ref. 7. The desorption of neutral Ca and F atoms has also been explored [1]. In this paper I focus on the emission of ions and neutrals from CaF2 under the irradiation of pulsed laser light at 266 nm, in addition to a brief study of its purity and transmittance.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15020718
Report Number(s):
PNNL-SA-40508; 2544a; KC0301020; TRN: US0504691
Journal Information:
Journal of Undergraduate Research, Vol. 4
Country of Publication:
United States
Language:
English