skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microstructure and Creep Properties of TiAl-Ti3Al In-Situ Composites

Abstract

Objectives: {lg_bullet} Exploit thermomechanical-processing techniques to fabricate TiAl/Ti3Al in-situ laminate composites with the size of lamella width down to submicron or nanometer length-scales. {lg_bullet} Characterize microstructure and elevated-temperature creep resistance of the in-situ composites. {lg_bullet} Investigate the fundamental interrelationships among microstructures, alloying additions, and mechanical properties of the in-situ composites so as to achieve the desired properties of the in-situ composites for high-temperature structural applications.

Authors:
;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
15013832
Report Number(s):
UCRL-SR-202498
TRN: US200803%%859
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CREEP; MECHANICAL PROPERTIES; MICROSTRUCTURE; TITANIUM ALLOYS

Citation Formats

Hodge, A M, and Hsiung, L L. Microstructure and Creep Properties of TiAl-Ti3Al In-Situ Composites. United States: N. p., 2004. Web. doi:10.2172/15013832.
Hodge, A M, & Hsiung, L L. Microstructure and Creep Properties of TiAl-Ti3Al In-Situ Composites. United States. doi:10.2172/15013832.
Hodge, A M, and Hsiung, L L. Wed . "Microstructure and Creep Properties of TiAl-Ti3Al In-Situ Composites". United States. doi:10.2172/15013832. https://www.osti.gov/servlets/purl/15013832.
@article{osti_15013832,
title = {Microstructure and Creep Properties of TiAl-Ti3Al In-Situ Composites},
author = {Hodge, A M and Hsiung, L L},
abstractNote = {Objectives: {lg_bullet} Exploit thermomechanical-processing techniques to fabricate TiAl/Ti3Al in-situ laminate composites with the size of lamella width down to submicron or nanometer length-scales. {lg_bullet} Characterize microstructure and elevated-temperature creep resistance of the in-situ composites. {lg_bullet} Investigate the fundamental interrelationships among microstructures, alloying additions, and mechanical properties of the in-situ composites so as to achieve the desired properties of the in-situ composites for high-temperature structural applications.},
doi = {10.2172/15013832},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 18 00:00:00 EST 2004},
month = {Wed Feb 18 00:00:00 EST 2004}
}

Technical Report:

Save / Share:
  • A new approach to powder processing is employed in forming titanium aluminide composites. The processing consists of internal heating of a customized powder blend by a fast electrical discharge of a homopolar generator. The high-energy high-rate '1MJ in 1s' pulse permits rapid heating of an electrically conducting powder mixture in a cold wall die. This short time at temperature approach offers the opportunity to control phase transformations and the degree of microstructural coarsening not readily possible with standard powder-processing approaches. This paper describes the consolidation results of titanium aluminide-based powder-composite materials. The focus of this study was the definition ofmore » microstructure/processing relationships for each of the composite constituents, first as monoliths and then in composite forms. Non-equilibrium phases present in rapidly solidified TiAl powders are transformed to metastable intermediates en route to the equilibrium gamma phase.« less
  • The stability of interfaces in lamellar TiAl (or TiAl/Ti{sub 3}Al laminate composite) by straining at ambient temperatures has been investigated using in-situ staining techniques performed in a transmission electron microscope in order to obtain direct evidence to support the previously proposed creep mechanisms in refined lamellar TiAl based upon the interface sliding in association with the cooperative motion of interfacial dislocations. It has been reported previously that the mobility of interfacial dislocations can play a crucial role in the creep deformation behavior of refined lamellar TiAl [1,2]. Since the operation of lattice dislocations within refined {alpha}{sub 2} and {gamma} lamellaemore » is largely restricted, the motion of interfacial dislocations becomes the major strain carrier for plasticity. Results of ex-situ TEM investigation have revealed the occurrence of interface sliding in low-stress (LS) creep regime and deformation twinning in high-stress (HS) creep regime. These results have led us to propose that interface sliding associated with a viscous glide of pre-existing interfacial dislocations is the predominant creep mechanism in LS regime and interface-activated deformation twinning in {gamma} lamellae is the predominant creep mechanism in HS regime. Stress concentration resulted from the pileup of interfacial dislocations is suggested to be the cause for the interface-activated deformation twinning. Accordingly, the creep resistance of refined lamellar TiAl is considered to depend greatly on the cooperative motion of interfacial dislocations, which in turn may solely be controlled and hindered by the interfacial segregation of solute atoms (such as W) or interfacial precipitation. Furthermore, through the in-situ TEM investigation, we also found that the lamellar interfaces could migrate directly through the cooperative motion of interfacial dislocations. That is, the {gamma}/{gamma}and {gamma}/{alpha}{sub 2} interfaces can migrate through interface sliding and lead to the coalescence or shrinkage of constituent lamellae (i.e. microstructural instability), which results in a weakening effect when refined lamellar TiAl is employed for engineering applications. Although it is anticipated that interface sliding and migration are prevalent at elevated temperatures, the present in-situ straining study reveals the instability of lamellar interfaces at ambient temperatures.« less
  • The primary and steady-state creep behavior of ductile-phase toughened Nb{sub 5}Si{sub 3}/Nb in-situ composites has been simulated using analytical and finite element (FE) continuum techniques. The microstructure of these composites is complex, consisting of large, elongated primary dendrites of the ductile (Nb) solid-solution phase in a eutectoid matrix with the silicide as the continuous phase. This microstructure has been idealized to facilitate the modeling; the effects of these idealizations on the predicted composite creep rates are discussed. Further, it has been assumed that the intrinsic creep behavior of each phase within the composite is the same as that of themore » corresponding bulk material. Thus, the experimentally measured creep properties of the bulk Nb{sub 5}Si{sub 3} and (Nb) phases have been analyzed to provide the required material constants in the creep constitutive equation. Model predictions of the steady-state composite creep rate have been compared with the experimental results for a Nb-10 at.% Si alloy. While accurate at low stress, the models under predict the composite creep rate at large stresses because the composite stress exponent is under predicted. In the case of primary creep, the models somewhat over predict the composite creep strain but are reasonably accurate given uncertainties in the primary creep data. Finally, FE predictions of the tensile stress distributions within the composites have been shown to be qualitatively consistent with the cracking observed experimentally during tertiary creep.« less
  • In this project, we conducted a comprehensive study on nuclear graphite properties with terahertz (THz) imaging. Graphite samples from Idaho National Laboratory were carefully imaged by continuous wave (CW) THz. The CW THz imaging of graphite shows that the samples from different billet with different fabricating conditions have different pore size and structure. Based on this result, we then used a phase sensitive THz system to study the graphite properties. In this exploration, various graphite were studied. By imaging nuclear graphite samples in reflection mode at nine different incident polarization angles using THz time-domain spectroscopy, we find that different domainmore » distributions and levels of porosity will introduce polarization dependence in THz reflectivity. Sample with higher density is less porous and has a smaller average domain distribution. As a consequence, it is less polarization-dependent and the polarization-dependent frequency is higher. The results also show that samples oxidized at higher temperatures tend to be more polarization dependent. The graphite from the external billet is more polarization dependent compared to that from the center billet. In addition, we performed laser-based ultrasonic measurements on these graphite samples. The denser, unoxidized samples allow surface acoustic waves to propagate more rapidly than in the samples that had already undergone oxidation. Therefore, for the oxidized samples, the denser samples show less polarization-dependence, higher polarization-dependent frequency, and allow the surface acoustic waves propagate faster.« less