Observation of Dicke cooperativity in magnetic interactions
The interaction ofNtwo-level atoms with a single-mode light field is an extensively studied many-body problem in quantum optics, first analyzed by Dicke in the context of superradiance. A characteristic of such systems is the cooperative enhancement of the coupling strength by a factor of N. In this study, we extended this cooperatively enhanced coupling to a solid-state system, demonstrating that it also occurs in a magnetic solid in the form of matter-matter interaction. Specifically, the exchange interaction ofNparamagnetic erbium(III) (Er3+) spins with an iron(III) (Fe3+) magnon field in erbium orthoferrite (ErFeO3) exhibits a vacuum Rabi splitting whose magnitude is proportional to N. Our results provide a route for understanding, controlling, and predicting novel phases of condensed matter using concepts and tools available in quantum optics.
- Research Organization:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1501365
- Journal Information:
- Science, Vol. 361, Issue 6404; ISSN 0036-8075
- Publisher:
- AAAS
- Country of Publication:
- United States
- Language:
- English
Similar Records
Quantum simulation of an extended Dicke model with a magnetic solid
Quantum tunneling in the adiabatic Dicke model