# LATTICE MATRIX ELEMENTS AND CP VIOLATION IN B AND KA PHYSICS: STATUS AND OUTLOOK.

## Abstract

Status of lattice calculations of hadron matrix elements along with CP violation in B and in K systems is reviewed. Lattice has provided useful input which, in conjunction with experimental data, leads to the conclusion that CP-odd phase in the CKM matrix plays the dominant role in the observed asymmetry in B {yields} {psi}K{sub s}. It is now quite likely that any beyond the SM, CP-odd, phase will cause only small deviations in B-physics. Search for the effects of the new phase(s) will consequently require very large data samples as well as very precise theoretical predictions. Clean determination of all the angles of the unitarity triangle therefore becomes essential. In this regard B {yields} KD{sup 0} processes play a unique role. Regarding K-decays, remarkable progress made by theory with regard to maintenance of chiral symmetry on the lattice is briefly discussed. First application already provide quantitative information on B{sub K} and the {Delta}I = 1/2 rule. The enhancement in ReA{sub 0} appears to arise solely from tree operators, esp. Q{sub 2}; penguin contribution to ReA{sub 0} appears to be very small. However, improved calculations are necessary for {epsilon}{prime}/{epsilon} as there the contributions of QCD penguins and electroweak penguins largely seemmore »

- Authors:

- Publication Date:

- Research Org.:
- BROOKHAVEN NATIONAL LABORATORY (US)

- Sponsoring Org.:
- DOE/SC (US)

- OSTI Identifier:
- 15006338

- Report Number(s):
- BNL-71464-2003-CP

R&D Project: PO22; KA140102; TRN: US0400699

- DOE Contract Number:
- AC02-98CH10886

- Resource Type:
- Conference

- Resource Relation:
- Conference: 9TH INTERNATIONAL SYMPOSIUM ON PARTICLES, STRINGS AND COMOLOGY, MUMBAI, BOMBAY (IN), 01/03/2003--01/08/2003; Other Information: PBD: 3 Jan 2003

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ASYMMETRY; CHIRAL SYMMETRY; HADRONS; MAINTENANCE; MATRIX ELEMENTS; PHYSICS; QUANTUM CHROMODYNAMICS; TREES; UNITARITY

### Citation Formats

```
SONI,A.
```*LATTICE MATRIX ELEMENTS AND CP VIOLATION IN B AND KA PHYSICS: STATUS AND OUTLOOK.*. United States: N. p., 2003.
Web.

```
SONI,A.
```*LATTICE MATRIX ELEMENTS AND CP VIOLATION IN B AND KA PHYSICS: STATUS AND OUTLOOK.*. United States.

```
SONI,A. Fri .
"LATTICE MATRIX ELEMENTS AND CP VIOLATION IN B AND KA PHYSICS: STATUS AND OUTLOOK.". United States.
doi:. https://www.osti.gov/servlets/purl/15006338.
```

```
@article{osti_15006338,
```

title = {LATTICE MATRIX ELEMENTS AND CP VIOLATION IN B AND KA PHYSICS: STATUS AND OUTLOOK.},

author = {SONI,A.},

abstractNote = {Status of lattice calculations of hadron matrix elements along with CP violation in B and in K systems is reviewed. Lattice has provided useful input which, in conjunction with experimental data, leads to the conclusion that CP-odd phase in the CKM matrix plays the dominant role in the observed asymmetry in B {yields} {psi}K{sub s}. It is now quite likely that any beyond the SM, CP-odd, phase will cause only small deviations in B-physics. Search for the effects of the new phase(s) will consequently require very large data samples as well as very precise theoretical predictions. Clean determination of all the angles of the unitarity triangle therefore becomes essential. In this regard B {yields} KD{sup 0} processes play a unique role. Regarding K-decays, remarkable progress made by theory with regard to maintenance of chiral symmetry on the lattice is briefly discussed. First application already provide quantitative information on B{sub K} and the {Delta}I = 1/2 rule. The enhancement in ReA{sub 0} appears to arise solely from tree operators, esp. Q{sub 2}; penguin contribution to ReA{sub 0} appears to be very small. However, improved calculations are necessary for {epsilon}{prime}/{epsilon} as there the contributions of QCD penguins and electroweak penguins largely seem to cancel. There are good reasons, though, to believe that these cancellations will not survive improvements that are now underway. Importance of determining the unitarity triangle purely from K-decays is also emphasized.},

doi = {},

journal = {},

number = ,

volume = ,

place = {United States},

year = {Fri Jan 03 00:00:00 EST 2003},

month = {Fri Jan 03 00:00:00 EST 2003}

}