skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evolution of Electronic Properties of (Cu(In,Ga)Se2 (CIGS)-Based Solar Cells During a 3-Stage Growth Process: Preprint

Conference ·

We investigated the electronic properties of ZnO/CdS/CIGS /Mo/SLG polycrystalline thin-film solar cells with compositions ranging from Cu-rich to In(Ga)-rich by deep-level transient spectroscopy (DLTS) and capacitance-voltage (C-V) measurements. This compositional change represents the evolution of the film during growth by the 3-stage process. Two sets (four samples each) of CIGS thin films were prepared with Ga/(In+Ga) ratios of~0.3 (low Ga) and~0.6 (high Ga). The Cu/(In+Ga) ratio ranges from 1.24 (Cu-rich) to 0.88 (In(Ga)-rich). The films were treated with NaCN to remove the Cu2-xSe phase where needed. Key results include: (1) For low-Ga devices, DLTS data show that acceptor-like traps dominate in samples where CIGS grains do not go through the Cu-rich to In(Ga)-rich transition, whereas donor-like traps dominate in In(Ga)-rich samples. Therefore, we see a clear transformation of defects from acceptor-like to donor-like traps. The activation energies of these traps range from 0.12 to 0.63 eV. We also observed that NaCN treatment eliminates a deep minority trap in the In(Ga)-rich devices, (2) For high-Ga devices, only majority-carrier traps were detected. These traps again range from shallow to deep, (3) The carrier concentration around the junction and the density of traps decrease as the CIGS becomes more In(Ga)-rich.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC36-99-GO10337
OSTI ID:
15004060
Report Number(s):
NREL/CP-520-33949; TRN: US201015%%296
Resource Relation:
Journal Volume: 763; Conference: Prepared for the 2003 Materials Research Society Spring Meeting, 21-25 April 2003, San Francisco, California
Country of Publication:
United States
Language:
English