skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling Chamber Transport for Heavy-Ion Fusion

Conference ·
OSTI ID:15002125

In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15002125
Report Number(s):
UCRL-JC-149578; TRN: US200408%%121
Resource Relation:
Conference: The Second IAEA Technical Meeting on Physics and Technology of Inertial Fusion Energy Targets and Chambers, San Diego, CA (US), 06/17/2002--06/19/2002; Other Information: PBD: 2 Aug 2002
Country of Publication:
United States
Language:
English