skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors: Feasibility demonstration

Abstract

We developed membrane voltage nanosensors that are based on inorganic semiconductor nanoparticles. We provide here a feasibility study for their utilization. We use a rationally designed peptide to functionalize the nanosensors, imparting them with the ability to self-insert into a lipid membrane with a desired orientation. Once inserted, these nanosensors could sense membrane potential via the quantum confined Stark effect, with a single-particle sensitivity. With further improvements, these nanosensors could potentially be used for simultaneous recording of action potentials from multiple neurons in a large field of view over a long duration and for recording electrical signals on the nanoscale, such as across one synapse.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [3]; ORCiD logo [4];  [5]; ORCiD logo [6];  [7];  [8];  [1]; ORCiD logo [9]
  1. Univ. of California, Los Angeles, CA (United States). Dept. of Chemistry and Biochemistry
  2. Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic). Inst. of Organic Chemistry and Biochemistry
  3. Univ. of California, Los Angeles, CA (United States). Dept. of Microbiology, Immunology, and Molecular Genetics
  4. Univ. of California, Los Angeles, CA (United States). Dept. of Chemical and Biomolecular Engineering
  5. Univ. of California, Los Angeles, CA (United States). Dept. of Ecology and Evolutionary Biology
  6. Univ. of California, Los Angeles, CA (United States). Dept. of Microbiology, Immunology, and Molecular Genetics. California NanoSystems Inst.
  7. Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology
  8. Univ. of California, Los Angeles, CA (United States). Dept. of Chemistry and Biochemistry. Dept. of Physics
  9. Univ. of California, Los Angeles, CA (United States). Dept. of Chemistry and Biochemistry. California NanoSystems Inst. Dept. of Physiology
Publication Date:
Research Org.:
Univ. of California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); National Inst. of Health (NIH) (United States); National Science Foundation (NSF); Defense Advanced Research Projects Agency (DARPA) (United States); United States–Israel Binational Science Foundation; Human Frontier Science Program
OSTI Identifier:
1499965
Grant/Contract Number:  
FC02-02ER63421; AC02-05CH11231; 1S10RR23057; GM071940; DMR-1309188; DMR-1548924; D14PC00141; 2010382; RGP0061/2015
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 1; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Park, Kyoungwon, Kuo, Yung, Shvadchak, Volodymyr, Ingargiola, Antonino, Dai, Xinghong, Hsiung, Lawrence, Kim, Wookyeom, Zhou, Hong, Zou, Peng, Levine, Alex J., Li, Jack, and Weiss, Shimon. Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors: Feasibility demonstration. United States: N. p., 2018. Web. doi:10.1126/sciadv.1601453.
Park, Kyoungwon, Kuo, Yung, Shvadchak, Volodymyr, Ingargiola, Antonino, Dai, Xinghong, Hsiung, Lawrence, Kim, Wookyeom, Zhou, Hong, Zou, Peng, Levine, Alex J., Li, Jack, & Weiss, Shimon. Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors: Feasibility demonstration. United States. doi:10.1126/sciadv.1601453.
Park, Kyoungwon, Kuo, Yung, Shvadchak, Volodymyr, Ingargiola, Antonino, Dai, Xinghong, Hsiung, Lawrence, Kim, Wookyeom, Zhou, Hong, Zou, Peng, Levine, Alex J., Li, Jack, and Weiss, Shimon. Fri . "Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors: Feasibility demonstration". United States. doi:10.1126/sciadv.1601453. https://www.osti.gov/servlets/purl/1499965.
@article{osti_1499965,
title = {Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors: Feasibility demonstration},
author = {Park, Kyoungwon and Kuo, Yung and Shvadchak, Volodymyr and Ingargiola, Antonino and Dai, Xinghong and Hsiung, Lawrence and Kim, Wookyeom and Zhou, Hong and Zou, Peng and Levine, Alex J. and Li, Jack and Weiss, Shimon},
abstractNote = {We developed membrane voltage nanosensors that are based on inorganic semiconductor nanoparticles. We provide here a feasibility study for their utilization. We use a rationally designed peptide to functionalize the nanosensors, imparting them with the ability to self-insert into a lipid membrane with a desired orientation. Once inserted, these nanosensors could sense membrane potential via the quantum confined Stark effect, with a single-particle sensitivity. With further improvements, these nanosensors could potentially be used for simultaneous recording of action potentials from multiple neurons in a large field of view over a long duration and for recording electrical signals on the nanoscale, such as across one synapse.},
doi = {10.1126/sciadv.1601453},
journal = {Science Advances},
issn = {2375-2548},
number = 1,
volume = 4,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1. Fig. 1.: Surface functionalization. (A) Cartoon describing design principles for rendering NR membrane protein–like properties. This functionalization will favor their stable, spontaneous insertion into the membrane with the correct orientation. (B) Peptide design for implementing (A). (C) Top view of an NR coated with peptides. Brown and orange colors depictmore » Cys-rich and lipophilic faces of the α-helical peptide, respectively. (D) Sequence of the designed peptide. C14-CO- stands for myristoyl acid residue attached to the N-terminal amino group. (E) Wheel diagram corresponding to the a-helical part of the peptide. Color coding is the same as in (C). aa, amino acid.« less

Save / Share:

Works referenced in this record:

Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires
journal, January 2012

  • Miller, E. W.; Lin, J. Y.; Frady, E. P.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 6
  • DOI: 10.1073/pnas.1120694109

Fusion of cationic liposomes with mammalian cells occurs after endocytosis
journal, May 1995


Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells
journal, October 2010

  • Mora-Seró, Iván; Bisquert, Juan
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 20
  • DOI: 10.1021/jz100863b

Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State
journal, December 2014

  • Seifert, Astrid; Göpfrich, Kerstin; Burns, Jonathan R.
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn5039433

Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites
journal, September 1993

  • Murray, C. B.; Norris, D. J.; Bawendi, M. G.
  • Journal of the American Chemical Society, Vol. 115, Issue 19, p. 8706-8715
  • DOI: 10.1021/ja00072a025

Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals
December 2000

  • Manna, Liberato; Scher, Erik C.; Alivisatos, A. Paul
  • Journal of the American Chemical Society, Vol. 122, Issue 51, p. 12700-12706
  • DOI: 10.1021/ja003055+

Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium
journal, October 1991


Allosteric regulation of DegS protease subunits through a shared energy landscape
journal, December 2012

  • Mauldin, Randall V.; Sauer, Robert T.
  • Nature Chemical Biology, Vol. 9, Issue 2
  • DOI: 10.1038/nchembio.1135

Advances in fluorescence imaging with quantum dot bio-probes
journal, March 2006


Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies
journal, October 2007

  • Talapin, Dmitri V.; Nelson, James H.; Shevchenko, Elena V.
  • Nano Letters, Vol. 7, Issue 10
  • DOI: 10.1021/nl072003g

Design Rules for Membrane-Embedded Voltage-Sensing Nanoparticles
journal, February 2017


Near Unity Quantum Yield of Light-Driven Redox Mediator Reduction and Efficient H 2 Generation Using Colloidal Nanorod Heterostructures
journal, July 2012

  • Zhu, Haiming; Song, Nianhui; Lv, Hongjin
  • Journal of the American Chemical Society, Vol. 134, Issue 28
  • DOI: 10.1021/ja303698e

Interactive notebooks: Sharing the code
journal, November 2014


Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:  Nucleation and Growth
journal, April 2002

  • Peng, Z. Adam; Peng, Xiaogang
  • Journal of the American Chemical Society, Vol. 124, Issue 13, p. 3343-3353
  • DOI: 10.1021/ja0173167

Azamacrocycle Activated Quantum Dot for Zinc Ion Detection
journal, November 2008

  • Ruedas-Rama, Maria Jose; Hall, Elizabeth A. H.
  • Analytical Chemistry, Vol. 80, Issue 21
  • DOI: 10.1021/ac801396y

Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes
journal, October 2014

  • Geng, Jia; Kim, Kyunghoon; Zhang, Jianfei
  • Nature, Vol. 514, Issue 7524
  • DOI: 10.1038/nature13817

Fusogenic activity of cationic lipids and lipid shape distribution
journal, November 2009

  • Lonez, Caroline; Lensink, Marc F.; Kleiren, Emilie
  • Cellular and Molecular Life Sciences, Vol. 67, Issue 3
  • DOI: 10.1007/s00018-009-0197-x

Single-exciton optical gain in semiconductor nanocrystals
journal, May 2007

  • Klimov, Victor I.; Ivanov, Sergei A.; Nanda, Jagjit
  • Nature, Vol. 447, Issue 7143
  • DOI: 10.1038/nature05839

Wave Function Engineering in Elongated Semiconductor Nanocrystals with Heterogeneous Carrier Confinement
journal, October 2005

  • Müller, J.; Lupton, J. M.; Lagoudakis, P. G.
  • Nano Letters, Vol. 5, Issue 10
  • DOI: 10.1021/nl051596x

Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics
journal, January 2005


Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability
journal, September 2012


Application of Thiolated Gold Nanoparticles for the Enhancement of Glucose Oxidase Activity
journal, March 2007

  • Pandey, Pratibha; Singh, Surinder P.; Arya, Sunil K.
  • Langmuir, Vol. 23, Issue 6
  • DOI: 10.1021/la062901c

Nanoblade Delivery and Incorporation of Quantum Dot Conjugates into Tubulin Networks in Live Cells
journal, October 2012

  • Xu, Jianmin; Teslaa, Tara; Wu, Ting-Hsiang
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl302821g

Quantum dot bioconjugates for imaging, labelling and sensing
journal, June 2005

  • Medintz, Igor L.; Uyeda, H. Tetsuo; Goldman, Ellen R.
  • Nature Materials, Vol. 4, Issue 6, p. 435-446
  • DOI: 10.1038/nmat1390

Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures
journal, November 2012


Single Quantum Dots as Local Temperature Markers
journal, October 2007

  • Li, Sha; Zhang, Kai; Yang, Jui-Ming
  • Nano Letters, Vol. 7, Issue 10
  • DOI: 10.1021/nl071606p

Solubilization of Quantum Dots with a Recombinant Peptide fromEscherichia coli
journal, May 2007


Auger Recombination Suppression in Nanocrystals with Asymmetric Electron-Hole Confinement
journal, January 2012


DNA-based programming of quantum dot valency, self-assembly and luminescence
journal, July 2011

  • Tikhomirov, Grigory; Hoogland, Sjoerd; Lee, P. E.
  • Nature Nanotechnology, Vol. 6, Issue 8
  • DOI: 10.1038/nnano.2011.100

Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality
journal, December 2003

  • Talapin, Dmitri V.; Koeppe, Robert; Götzinger, Stephan
  • Nano Letters, Vol. 3, Issue 12
  • DOI: 10.1021/nl034815s

Full-colour quantum dot displays fabricated by transfer printing
journal, February 2011


Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature
journal, October 2012

  • Park, KyoungWon; Deutsch, Zvicka; Li, J. Jack
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn303719m

Electrical control of Förster energy transfer
journal, September 2006

  • Becker, Klaus; Lupton, John M.; Müller, Josef
  • Nature Materials, Vol. 5, Issue 10
  • DOI: 10.1038/nmat1738

Enhancing the Photoluminescence of Peptide-Coated Nanocrystals with Shell Composition and UV Irradiation
journal, February 2005

  • Tsay, James M.; Doose, Sören; Pinaud, Fabien
  • The Journal of Physical Chemistry B, Vol. 109, Issue 5
  • DOI: 10.1021/jp046828f

Shape control of CdSe nanocrystals
journal, March 2000

  • Peng, Xiaogang; Manna, Liberato; Yang, Weidong
  • Nature, Vol. 404, Issue 6773, p. 59-61
  • DOI: 10.1038/35003535

Bioactivation and Cell Targeting of Semiconductor CdSe/ZnS Nanocrystals with Phytochelatin-Related Peptides
journal, May 2004

  • Pinaud, Fabien; King, David; Moore, Hsiao-Ping
  • Journal of the American Chemical Society, Vol. 126, Issue 19
  • DOI: 10.1021/ja031691c

Recent progress in the bioconjugation of quantum dots
journal, March 2014

  • Blanco-Canosa, Juan B.; Wu, Miao; Susumu, Kimihiro
  • Coordination Chemistry Reviews, Vol. 263-264
  • DOI: 10.1016/j.ccr.2013.08.030

Monitoring surface charge migration in the spectral dynamics of single Cd Se Cd S nanodot/nanorod heterostructures
journal, November 2005


Self-Assembled Quantum Dot−Peptide Bioconjugates for Selective Intracellular Delivery
journal, July 2006

  • Delehanty, James B.; Medintz, Igor L.; Pons, Thomas
  • Bioconjugate Chemistry, Vol. 17, Issue 4
  • DOI: 10.1021/bc060044i

Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing
journal, August 2010

  • Medintz, Igor L.; Stewart, Michael H.; Trammell, Scott A.
  • Nature Materials, Vol. 9, Issue 8
  • DOI: 10.1038/nmat2811

Colloidal Quantum Dots as Probes of Excitation Field Enhancement in Photonic Antennas
journal, July 2010

  • Aouani, Heykel; Itzhakov, Stella; Gachet, David
  • ACS Nano, Vol. 4, Issue 8
  • DOI: 10.1021/nn1009209

Radiative Recombination of Spatially Extended Excitons in (ZnSe/CdS)/CdS Heterostructured Nanorods
journal, January 2009

  • Hewa-Kasakarage, Nishshanka N.; Kirsanova, Maria; Nemchinov, Alexander
  • Journal of the American Chemical Society, Vol. 131, Issue 3
  • DOI: 10.1021/ja8082895

Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells
journal, December 2013


Fluorescence intermittency in single cadmium selenide nanocrystals
journal, October 1996

  • Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.
  • Nature, Vol. 383, Issue 6603
  • DOI: 10.1038/383802a0

Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice
journal, January 2009


Multifunctional Lipid/Quantum Dot Hybrid Nanocontainers for Controlled Targeting of Live Cells
journal, August 2006

  • Gopalakrishnan, Gopakumar; Danelon, Christophe; Izewska, Paulina
  • Angewandte Chemie International Edition, Vol. 45, Issue 33
  • DOI: 10.1002/anie.200600545

High Affinity scFv−Hapten Pair as a Tool for Quantum Dot Labeling and Tracking of Single Proteins in Live Cells
journal, December 2008

  • Iyer, Gopal; Michalet, Xavier; Chang, Yun-Pei
  • Nano Letters, Vol. 8, Issue 12
  • DOI: 10.1021/nl8032284

Stable, Compact, Bright Biofunctional Quantum Dots with Improved Peptide Coating
journal, August 2012

  • Xu, Jianmin; Ruchala, Piotr; Ebenstain, Yuval
  • The Journal of Physical Chemistry B, Vol. 116, Issue 36
  • DOI: 10.1021/jp306453y

FRET between CdSe Quantum Dots in Lipid Vesicles and Water- and Lipid-soluble Dyes
journal, November 2004

  • Kloepfer, Jeremiah A.; Cohen, Netta; Nadeau, Jay L.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 44
  • DOI: 10.1021/jp048094c

Lipid−Quantum Dot Bilayer Vesicles Enhance Tumor Cell Uptake and Retention in Vitro and in Vivo
journal, March 2008

  • Al-Jamal, Wafa’ T.; Al-Jamal, Khuloud T.; Tian, Bowen
  • ACS Nano, Vol. 2, Issue 3
  • DOI: 10.1021/nn700176a

Bright future of optical assays for ion channel drug discovery
journal, January 2008


Room-Temperature Exciton Storage in Elongated Semiconductor Nanocrystals
journal, January 2007


Optical Strategies for Sensing Neuronal Voltage Using Quantum Dots and Other Semiconductor Nanocrystals
journal, April 2013

  • Marshall, Jesse D.; Schnitzer, Mark J.
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn401410k

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.