skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exchange-coupled Fe 3O 4/CoFe 2O 4 nanoparticles for advanced magnetic hyperthermia

Abstract

We report a systematic study of the effects of core and shell size on the magnetic properties and heating efficiency of exchange-coupled Fe 3O 4/CoFe 2O 4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) confirmed the formation of spherical Fe 3O 4 and Fe 3O 4/CoFe 2O 4 nanoparticles. Magnetic measurements showed high saturation magnetization for the nanoparticles at room temperature. Increasing core diameter (6.4±0.7, 7.8±0.1, 9.6±1.2 nm) and/or shell thickness (~1, 2, 4 nm) increased the coercive field (H C), while an optimal value of saturation magnetization (M S) was achieved for the Fe 3O 4 (7.8±0.1nm)/CoFe 2O 4 (2.1±0.1nm) nanoparticles. Magnetic hyperthermia measurements indicated a large increase in specific absorption rate (SAR) for 8.2±1.1 nm Fe 3O 4/CoFe 2O 4 compared to Fe 3O 4 nanoparticles of same size. The SAR of the Fe 3O 4/CoFe 2O 4 nanoparticles increased from 199 to 461 W/g for 800 Oe as the thickness of the CoFe 2O 4 shell was increased from 0.9±0.5 to 2.1±0.1 nm. The SAR enhancement is attributed to a combination of the large M S and the large H C. Therefore, these Fe 3O 4/CoFe 2O 4more » core/shell nanoparticles can be a good candidate for advanced hyperthermia application.« less

Authors:
 [1];  [1];  [2];  [1];  [1]
  1. Univ. of South Florida, Tampa, FL (United States)
  2. Univ. of South Florida, Tampa, FL (United States); Univ. of Scranton, PA (United States)
Publication Date:
Research Org.:
Univ. of South Florida, Tampa, FL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1499262
Alternate Identifier(s):
OSTI ID: 1415887
Grant/Contract Number:  
FG02-07ER46438
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
AIP Advances
Additional Journal Information:
Journal Volume: 8; Journal Issue: 5; Journal ID: ISSN 2158-3226
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Robles, J., Das, R., Glassell, M., Phan, M. H., and Srikanth, H. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia. United States: N. p., 2018. Web. doi:10.1063/1.5007249.
Robles, J., Das, R., Glassell, M., Phan, M. H., & Srikanth, H. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia. United States. doi:10.1063/1.5007249.
Robles, J., Das, R., Glassell, M., Phan, M. H., and Srikanth, H. Fri . "Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia". United States. doi:10.1063/1.5007249. https://www.osti.gov/servlets/purl/1499262.
@article{osti_1499262,
title = {Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia},
author = {Robles, J. and Das, R. and Glassell, M. and Phan, M. H. and Srikanth, H.},
abstractNote = {We report a systematic study of the effects of core and shell size on the magnetic properties and heating efficiency of exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) confirmed the formation of spherical Fe3O4 and Fe3O4/CoFe2O4 nanoparticles. Magnetic measurements showed high saturation magnetization for the nanoparticles at room temperature. Increasing core diameter (6.4±0.7, 7.8±0.1, 9.6±1.2 nm) and/or shell thickness (~1, 2, 4 nm) increased the coercive field (HC), while an optimal value of saturation magnetization (MS) was achieved for the Fe3O4 (7.8±0.1nm)/CoFe2O4 (2.1±0.1nm) nanoparticles. Magnetic hyperthermia measurements indicated a large increase in specific absorption rate (SAR) for 8.2±1.1 nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of same size. The SAR of the Fe3O4/CoFe2O4 nanoparticles increased from 199 to 461 W/g for 800 Oe as the thickness of the CoFe2O4 shell was increased from 0.9±0.5 to 2.1±0.1 nm. The SAR enhancement is attributed to a combination of the large MS and the large HC. Therefore, these Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.},
doi = {10.1063/1.5007249},
journal = {AIP Advances},
issn = {2158-3226},
number = 5,
volume = 8,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

FIG. 1. FIG. 1. : TEM images of Fe3O4 core and Fe3O4/CoFe2O4 core/shell nanoparticles: a) 6.4±0.7 nm core, b) 6.4±0.7 nm/ 0.9±0.5 nm, c) 7.8±0.1 nm core, d) 7.8±0.1 nm/0.9±0.3 nm, e) 7.8±0.1 nm/2.1±0.1 nm, f) 7.8±0.1 nm/4.4±1.1 nm, g) 9.6±1.2 nm core, h) 9.6±1.2 nm/1.4±0.4 nm.

Save / Share:

Works referenced in this record:

Nano-objects for Addressing the Control of Nanoparticle Arrangement and Performance in Magnetic Hyperthermia
journal, January 2015

  • Andreu, Irene; Natividad, Eva; Solozábal, Laura
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn505781f

Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy
journal, September 2006

  • Hergt, Rudolf; Dutz, Silvio; Müller, Robert
  • Journal of Physics: Condensed Matter, Vol. 18, Issue 38
  • DOI: 10.1088/0953-8984/18/38/s26

Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe 3 O 4 nanoparticles
journal, May 2015

  • Khurshid, H.; Alonso, J.; Nemati, Z.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4919250

Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe 3 O 4 Nanoflowers
journal, September 2016

  • Das, R.; Rinaldi-Montes, N.; Alonso, J.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 38
  • DOI: 10.1021/acsami.6b09942

Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia
journal, July 2012

  • Usov, N. A.; Liubimov, B. Ya.
  • Journal of Applied Physics, Vol. 112, Issue 2
  • DOI: 10.1063/1.4737126

Synthesis of Trimagnetic Multishell MnFe 2 O 4 @CoFe 2 O 4 @NiFe 2 O 4 Nanoparticles
journal, February 2015

  • Gavrilov-Isaac, Véronica; Neveu, Sophie; Dupuis, Vincent
  • Small, Vol. 11, Issue 22
  • DOI: 10.1002/smll.201402845

Nanoscale Magnetism Control via Surface and Exchange Anisotropy for Optimized Ferrimagnetic Hysteresis
journal, June 2012

  • Noh, Seung-hyun; Na, Wonjun; Jang, Jung-tak
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl301499u

Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles
journal, January 2004

  • Sun, Shouheng; Zeng, Hao; Robinson, David B.
  • Journal of the American Chemical Society, Vol. 126, Issue 1
  • DOI: 10.1021/ja0380852

Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
journal, April 2011

  • Carrey, J.; Mehdaoui, B.; Respaud, M.
  • Journal of Applied Physics, Vol. 109, Issue 8
  • DOI: 10.1063/1.3551582

Physics of heat generation using magnetic nanoparticles for hyperthermia
journal, October 2013


Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia
journal, April 2016

  • Das, Raja; Alonso, Javier; Nemati Porshokouh, Zohreh
  • The Journal of Physical Chemistry C, Vol. 120, Issue 18
  • DOI: 10.1021/acs.jpcc.6b02006

Ultrathin Interface Regime of Core–Shell Magnetic Nanoparticles for Effective Magnetism Tailoring
journal, January 2017


Exchange-coupled magnetic nanoparticles for efficient heat induction
journal, June 2011

  • Lee, Jae-Hyun; Jang, Jung-tak; Choi, Jin-sil
  • Nature Nanotechnology, Vol. 6, Issue 7
  • DOI: 10.1038/nnano.2011.95

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.