skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New tolerance factor to predict the stability of perovskite oxides and halides

Abstract

Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, τ, that correctly predicts 92% of compounds as perovskite or nonperovskite for an experimental dataset of 576 ABX3 materials (X = O2–, F, Cl, Br, I) using a novel data analytics approach based on SISSO (sure independence screening and sparsifying operator). τ is shown to generalize outside the training set for 1034 experimentally realized single and double perovskites (91% accuracy) and is applied to identify 23,314 new double perovskites (A2BB'X6) ranked by their probability of being stable as perovskite. Furthermore, this work guides experimentalists and theorists toward which perovskites are most likely to be successfully synthesized and demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perovskite stability predictions.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [2]; ORCiD logo [4]; ORCiD logo [2];  [2]
  1. Univ. of Colorado, Boulder, CO (United States)
  2. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany)
  3. Univ. of Michigan, Ann Arbor, MI (United States)
  4. Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office
OSTI Identifier:
1496850
Report Number(s):
NREL/JA-5K00-73346
Journal ID: ISSN 2375-2548
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 5; Journal Issue: 2; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; perovskites; functional materials; photovoltaics; electrocatalysts

Citation Formats

Bartel, Christopher J., Sutton, Christopher, Goldsmith, Bryan R., Ouyang, Runhai, Musgrave, Charles B., Ghiringhelli, Luca M., and Scheffler, Matthias. New tolerance factor to predict the stability of perovskite oxides and halides. United States: N. p., 2019. Web. doi:10.1126/sciadv.aav0693.
Bartel, Christopher J., Sutton, Christopher, Goldsmith, Bryan R., Ouyang, Runhai, Musgrave, Charles B., Ghiringhelli, Luca M., & Scheffler, Matthias. New tolerance factor to predict the stability of perovskite oxides and halides. United States. https://doi.org/10.1126/sciadv.aav0693
Bartel, Christopher J., Sutton, Christopher, Goldsmith, Bryan R., Ouyang, Runhai, Musgrave, Charles B., Ghiringhelli, Luca M., and Scheffler, Matthias. 2019. "New tolerance factor to predict the stability of perovskite oxides and halides". United States. https://doi.org/10.1126/sciadv.aav0693. https://www.osti.gov/servlets/purl/1496850.
@article{osti_1496850,
title = {New tolerance factor to predict the stability of perovskite oxides and halides},
author = {Bartel, Christopher J. and Sutton, Christopher and Goldsmith, Bryan R. and Ouyang, Runhai and Musgrave, Charles B. and Ghiringhelli, Luca M. and Scheffler, Matthias},
abstractNote = {Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, τ, that correctly predicts 92% of compounds as perovskite or nonperovskite for an experimental dataset of 576 ABX3 materials (X = O2–, F–, Cl–, Br–, I–) using a novel data analytics approach based on SISSO (sure independence screening and sparsifying operator). τ is shown to generalize outside the training set for 1034 experimentally realized single and double perovskites (91% accuracy) and is applied to identify 23,314 new double perovskites (A2BB'X6) ranked by their probability of being stable as perovskite. Furthermore, this work guides experimentalists and theorists toward which perovskites are most likely to be successfully synthesized and demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perovskite stability predictions.},
doi = {10.1126/sciadv.aav0693},
url = {https://www.osti.gov/biblio/1496850}, journal = {Science Advances},
issn = {2375-2548},
number = 2,
volume = 5,
place = {United States},
year = {Fri Feb 08 00:00:00 EST 2019},
month = {Fri Feb 08 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 563 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Perovskite structure and composition. (A) ABX3, in the cubic single perovskite structure (Pm$$\overline{3}$$m), where the A cation is surrounded by a network of cornersharing BX6 octahedra. (B) A2BB′X6, in the rock salt double perovskite structure (Fm $$\overline{3}$$m), where the A cations are surrounded by an alternating network ofmore » BX6 and B′X6 octahedra. In this structure, inverting the B and B′ cations results in an equivalent structure. While the ideal cubic structures are shown here, perovskites may also adopt various noncubic structures. (C) Map of the elements that occupy the A, B, and/or X sites within the 576 compounds experimentally characterized as perovskite or nonperovskite at ambient conditions and reported in (17–19).« less

Save / Share:

Works referenced in this record:

Prediction of the crystal structures of perovskites using the software program SPuDS
journal, November 2001


Generalized Gradient Approximation Made Simple
journal, October 1996


Predictions of new AB O 3 perovskite compounds by combining machine learning and density functional theory
journal, April 2018


Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors?
journal, January 2013


Crystal structure prediction from first principles
journal, December 2008


On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system
journal, January 2016


Structural stability and formability of AB O 3 -type perovskite compounds
journal, November 2007


The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


The Principles Determining the Structure of Complex Ionic Crystals
journal, April 1929


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
journal, November 2017


Perovskites in catalysis and electrocatalysis
journal, November 2017


Die Gesetze der Krystallochemie
journal, May 1926


Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog
journal, January 2014


Classification of AB O 3 perovskite solids: a machine learning study
journal, September 2015


Finding New Perovskite Halides via Machine Learning
journal, April 2016


Promises and challenges of perovskite solar cells
journal, November 2017


SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates
journal, August 2018


The geometric blueprint of perovskites
journal, May 2018


Formability of ABO3 perovskites
journal, June 2004


The high-throughput highway to computational materials design
journal, February 2013


Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


Origin of ferroelectricity in perovskite oxides
journal, July 1992


Cu–In Halide Perovskite Solar Absorbers
journal, May 2017


Crystal structure of double oxides of the perovskite type
journal, March 1946


Cs 2 AgBiX 6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors
journal, February 2016


Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


Lead-Free Perovskite Solar Cells
journal, March 2017


How Evolutionary Crystal Structure Prediction Works—and Why
journal, March 2011


The Inorganic Crystal Structure Database (ICSD)—Present and Future
journal, January 2004


Formability of ABX 3 ( X = F, Cl, Br, I) halide perovskites
journal, November 2008


Thermodynamics of Global Optimization
journal, February 1998


Thermodynamic Stability Trend of Cubic Perovskites
journal, October 2017


Crystal Structure and Microwave Dielectric Properties of Alkaline-Earth Hafnates, AHfO 3 (A=Ba, Sr, Ca)
journal, March 2008


Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites
journal, February 2017


Optimization by Simulated Annealing
journal, May 1983


Chemically diverse and multifunctional hybrid organic–inorganic perovskites
journal, February 2017


Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning
journal, May 2017


Crystal structure of double oxides of the perovskite type
journal, May 1946


On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system.
journalarticle, January 2016


The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
text, January 2015


Big Data of Materials Science - Critical Role of the Descriptor
text, January 2014


The Geometric Blueprint of Perovskites
text, January 2018


Lead-Free Perovskite Solar Cells
journal, March 2017


How Evolutionary Crystal Structure Prediction Works—and Why
journal, March 2011


Cu–In Halide Perovskite Solar Absorbers
journal, May 2017


Crystal structure prediction from first principles
journal, December 2008


The Inorganic Crystal Structure Database (ICSD)—Present and Future
journal, January 2004


Crystal structure of double oxides of the perovskite type
journal, May 1946


Optimization by Simulated Annealing
journal, May 1983


Works referencing / citing this record:

Understanding the Instability of the Halide Perovskite CsPbI 3 through Temperature‐Dependent Structural Analysis
journal, July 2020


Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, September 2019


Synthesis of Lanthanum Tungsten Oxynitride Perovskite Thin Films
journal, May 2019


A Critical Review of Machine Learning of Energy Materials
journal, January 2020


Recent Developments in Lead‐Free Double Perovskites: Structure, Doping, and Applications
journal, December 2019


Optoelectronic Properties and the Stability of Mixed MA 1 −  x IA x PbI 3 Perovskites
journal, April 2020


CaXH 3 (X = Mn, Fe, Co) perovskite‐type hydrides for hydrogen storage applications
journal, December 2019


Rapid Discovery of Ferroelectric Photovoltaic Perovskites and Material Descriptors via Machine Learning
journal, May 2019


Lead‐Free Double Perovskites for Perovskite Solar Cells
journal, August 2019


Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition
journal, November 2019


Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications
journal, January 2020


Magnetic transitions in exotic perovskites stabilized by chemical and physical pressure
journal, January 2020


Photophysics of lead-free tin halide perovskite films and solar cells
journal, August 2019


Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO
journal, March 2019


From DFT to machine learning: recent approaches to materials science–a review
journal, May 2019


The NOMAD laboratory: from data sharing to artificial intelligence
journal, May 2019


Prediction of new iodine-containing apatites using machine learning and density functional theory
journal, August 2019


Computational Screening of New Perovskite Materials Using Transfer Learning and Deep Learning
journal, December 2019


Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, November 2019


Data-driven materials science: status, challenges and perspectives
text, January 2019


Extending Shannon's Ionic Radii Database Using Machine Learning
text, January 2021


Free-spin dominated magnetocaloric effect in dense Gd$^{3+}$ double perovskites
preprint, January 2022