skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal performance and potential annual energy impact of retrofit thin-glass triple-pane glazing in US residential buildings

Abstract

Heat transfer through the building envelope and associated air leakage comprise the largest HVAC loads in most climates, and windows, which are known as the weakest link in the thermal envelope, are responsible for about 5 Quads, or approximately 10%, of building energy use. Therefore, windows offer a significant opportunity for building energy savings. High performance windows, such as triple glazing, though comprised of less than 2% of all US window sales in 2016 and has remained stagnant because they typically require a full and expensive redesign of the typical window sash and frame. One potential low incremental cost solution to kick start the market is upgrading the glazing with a thin-glass triple-pane design that does not require modifications to existing frame and sash. Here in this work, we first define the characteristics and performance of current “typical” residential windows through an examination of the National Fenestration Rating Council (NFRC) Certified Products Directory (CPD). With knowledge of the typical window, we determine the potential thermal performance impact of replacing typical glazing with thin-glass triple-pane glazing. Finally, with an understanding of the potential improvements to traditional performance metrics, such as U-factor, we show the energy savings potential of the thin-triple glazingmore » in place of typical low-e windows in residential buildings is 16% in heating dominated climates such as Minneapolis, MN, 12% in mixed climates such as Washington DC, and 7% in cooling dominated climates such as Houston, TX.« less

Authors:
; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B)
OSTI Identifier:
1494111
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article
Journal Name:
Building Simulation
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 1996-3599
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION

Citation Formats

Hart, Robert, Selkowitz, Stephen, and Curcija, Charlie. Thermal performance and potential annual energy impact of retrofit thin-glass triple-pane glazing in US residential buildings. United States: N. p., 2019. Web. doi:10.1007/s12273-018-0491-3.
Hart, Robert, Selkowitz, Stephen, & Curcija, Charlie. Thermal performance and potential annual energy impact of retrofit thin-glass triple-pane glazing in US residential buildings. United States. doi:10.1007/s12273-018-0491-3.
Hart, Robert, Selkowitz, Stephen, and Curcija, Charlie. Fri . "Thermal performance and potential annual energy impact of retrofit thin-glass triple-pane glazing in US residential buildings". United States. doi:10.1007/s12273-018-0491-3.
@article{osti_1494111,
title = {Thermal performance and potential annual energy impact of retrofit thin-glass triple-pane glazing in US residential buildings},
author = {Hart, Robert and Selkowitz, Stephen and Curcija, Charlie},
abstractNote = {Heat transfer through the building envelope and associated air leakage comprise the largest HVAC loads in most climates, and windows, which are known as the weakest link in the thermal envelope, are responsible for about 5 Quads, or approximately 10%, of building energy use. Therefore, windows offer a significant opportunity for building energy savings. High performance windows, such as triple glazing, though comprised of less than 2% of all US window sales in 2016 and has remained stagnant because they typically require a full and expensive redesign of the typical window sash and frame. One potential low incremental cost solution to kick start the market is upgrading the glazing with a thin-glass triple-pane design that does not require modifications to existing frame and sash. Here in this work, we first define the characteristics and performance of current “typical” residential windows through an examination of the National Fenestration Rating Council (NFRC) Certified Products Directory (CPD). With knowledge of the typical window, we determine the potential thermal performance impact of replacing typical glazing with thin-glass triple-pane glazing. Finally, with an understanding of the potential improvements to traditional performance metrics, such as U-factor, we show the energy savings potential of the thin-triple glazing in place of typical low-e windows in residential buildings is 16% in heating dominated climates such as Minneapolis, MN, 12% in mixed climates such as Washington DC, and 7% in cooling dominated climates such as Houston, TX.},
doi = {10.1007/s12273-018-0491-3},
journal = {Building Simulation},
issn = {1996-3599},
number = 1,
volume = 12,
place = {United States},
year = {2019},
month = {1}
}