skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction

Abstract

Here, controlling the 3-D morphology of nanocatalysts is one of the underexplored but important approaches for improving the sluggish kinetics of oxygen evolution reaction (OER) in water electrolysis. This work reports a scalable, oil-based method based on thermal decomposition or organometallic complexes to yield highly uniform Ni-Fe-based nanocatalysts with well-defined morphology (i.e., Ni-Fe core-shell, Ni/Fe alloy, and Fe-Ni core shell).

Authors:
 [1]; ORCiD logo [2];  [1];  [3];  [1];  [4];  [4];  [2];  [5];  [1];  [1]
  1. Univ. of Arkansas, Fayetteville, AR (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States); Tsinghua Univ., Beijing (People's Republic of China)
  4. Argonne National Lab. (ANL), Lemont, IL (United States)
  5. Tsinghua Univ., Beijing (People's Republic of China)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1494044
Alternate Identifier(s):
OSTI ID: 1494964
Report Number(s):
BNL-211253-2019-JAAM
Journal ID: ISSN 2040-3364
Grant/Contract Number:  
SC0012704; AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 11; Journal Issue: 17; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Manso, Ryan H., Zhu, Yimei, Acharya, Prashant, Deng, Shiqing, Crane, Cameron C., Reinhart, Benjamin, Lee, Sungsik, Tong, Xiao, Zhu, Jing, Greenlee, Lauren F., and Chen, Jingyi. Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction. United States: N. p., 2019. Web. doi:10.1039/C8NR10138H.
Manso, Ryan H., Zhu, Yimei, Acharya, Prashant, Deng, Shiqing, Crane, Cameron C., Reinhart, Benjamin, Lee, Sungsik, Tong, Xiao, Zhu, Jing, Greenlee, Lauren F., & Chen, Jingyi. Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction. United States. https://doi.org/10.1039/C8NR10138H
Manso, Ryan H., Zhu, Yimei, Acharya, Prashant, Deng, Shiqing, Crane, Cameron C., Reinhart, Benjamin, Lee, Sungsik, Tong, Xiao, Zhu, Jing, Greenlee, Lauren F., and Chen, Jingyi. 2019. "Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction". United States. https://doi.org/10.1039/C8NR10138H. https://www.osti.gov/servlets/purl/1494044.
@article{osti_1494044,
title = {Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction},
author = {Manso, Ryan H. and Zhu, Yimei and Acharya, Prashant and Deng, Shiqing and Crane, Cameron C. and Reinhart, Benjamin and Lee, Sungsik and Tong, Xiao and Zhu, Jing and Greenlee, Lauren F. and Chen, Jingyi},
abstractNote = {Here, controlling the 3-D morphology of nanocatalysts is one of the underexplored but important approaches for improving the sluggish kinetics of oxygen evolution reaction (OER) in water electrolysis. This work reports a scalable, oil-based method based on thermal decomposition or organometallic complexes to yield highly uniform Ni-Fe-based nanocatalysts with well-defined morphology (i.e., Ni-Fe core-shell, Ni/Fe alloy, and Fe-Ni core shell).},
doi = {10.1039/C8NR10138H},
url = {https://www.osti.gov/biblio/1494044}, journal = {Nanoscale},
issn = {2040-3364},
number = 17,
volume = 11,
place = {United States},
year = {Mon Feb 18 00:00:00 EST 2019},
month = {Mon Feb 18 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe 4+ by Mössbauer Spectroscopy
journal, November 2015


Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and Fe-Doped NiO x
journal, March 2014


Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media
journal, August 2015


Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion
journal, January 2014


Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction
journal, October 2014


Recent progress in alkaline water electrolysis for hydrogen production and applications
journal, June 2010


Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion: Cr-doped silica and ferric oxide gel
journal, January 2016


Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH
journal, January 2017


Effects of Fe Electrolyte Impurities on Ni(OH) 2 /NiOOH Structure and Oxygen Evolution Activity
journal, March 2015


Electronic Structure of the (Undoped and Fe-Doped) NiOOH O 2 Evolution Electrocatalyst
journal, August 2016


Nickel-iron catalysts for electrochemical water oxidation – redox synergism investigated by in situ X-ray spectroscopy with millisecond time resolution
journal, January 2018


Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions
journal, December 2016


Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction
journal, May 2018


Oxidation state and chemical shift investigation in transition metal oxides by EELS
journal, May 2012


Accounting for the Dynamic Oxidative Behavior of Nickel Anodes
journal, January 2016


Synthesis of Pd/Fe 3 O 4 Hybrid Nanocatalysts with Controllable Interface and Enhanced Catalytic Activities for CO Oxidation
journal, June 2012


In situ x-ray absorption fine structure studies of foreign metal ions in nickel hydrous oxide electrodes in alkaline electrolytes
journal, October 1994


Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction
journal, December 2015


Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction
journal, April 2018


Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts
journal, June 2018


Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012


Magnetic circular dichroism in Fe 2 p resonant photoemission of magnetite
journal, February 2004


The effect of ferric ions on the behaviour of a nickelous hydroxide electrode
journal, March 1984


Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011


A Reliable Aerosol-Spray-Assisted Approach to Produce and Optimize Amorphous Metal Oxide Catalysts for Electrochemical Water Splitting
journal, June 2014


An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013


Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions
journal, January 2018


Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles
journal, January 2004


In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity
journal, November 2015


Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
journal, July 2014


Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase
journal, August 2015


Nickel Oxides-Relation Between Electrochemical and Foreign Ion Content
journal, May 1952


Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO 3 interface
journal, March 2018


Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy
journal, November 2001


The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes
journal, January 1987


Nickel hydroxides and related materials: a review of their structures, synthesis and properties
journal, February 2015

  • Hall, David S.; Lockwood, David J.; Bock, Christina
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 471, Issue 2174
  • https://doi.org/10.1098/rspa.2014.0792

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013


NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes
journal, July 2016


Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles
journal, October 2015


Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts
journal, April 2016


Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
journal, January 2015


Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity
journal, August 2017


Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts
journal, October 2016


Correlation between electronic structure and magnetic properties of Fe-doped ZnO films
journal, June 2012


Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014


In-situ Moessbauer study of redox processes in a composite hydroxide of iron and nickel
journal, September 1987


Role of Catalyst Preparation on the Electrocatalytic Activity of Ni 1– x Fe x OOH for the Oxygen Evolution Reaction
journal, August 2015


Electrocatalytic properties of transition metal oxides for oxygen evolution reaction
journal, May 1986


Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst
journal, May 2014


A comprehensive review on PEM water electrolysis
journal, April 2013


Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction
journal, January 2018


X-ray Absorption Spectroscopy Studies of the Local Atomic and Electronic Structure of Iron Incorporated into Electrodeposited Hydrous Nickel Oxide Films
journal, May 2000


Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films
journal, January 2017


Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions
text, January 2018


Works referencing / citing this record: