skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes

Abstract

Electrolyte instability is one of the greatest impediments that must be overcome for the practical development of rechargeable aprotic Li–air batteries. In this work, we establish a comprehensive framework for evaluation of the stability of potential organic electrolytes for aprotic Li–air batteries that is based on four key descriptors: Bond dissociation energy, deprotonation free energy (i.e., Acidity), Nucleophilic substitution free energy, and Electrochemical oxidation/reduction. These parameters were calculated for several classes of organic compounds. The chemical stability of the molecules was studied experimentally under conditions designed to mimic the aprotic Li–air battery environment (heating in the presence of excess KO2 and Li2O2). In general, the calculated and experimental data agreed well for alkanes, alkenes, ethers, aromatics, carbonates, and S-containing and N-containing compounds. Using this dataset, we identified functional groups and other structural features of organic molecules that may be suitable for aprotic Li–air battery electrolyte design.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [2]; ORCiD logo [2];  [4]; ORCiD logo [5]; ORCiD logo [3]; ORCiD logo [2]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Chemical Engineering
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Chemistry
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Chemical Engineering
  5. Samsung Advanced Inst. of Technology (SAIT), Burlington, MA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1493617
DOE Contract Number:  
AC02-5CH11231
Resource Type:
Journal Article
Journal Name:
Journal of Materials Chemistry A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 45; Journal ID: ISSN 2050-7488
Country of Publication:
United States
Language:
English

Citation Formats

Feng, Shuting, Chen, Mao, Giordano, Livia, Huang, Mingjun, Zhang, Wenxu, Amanchukwu, Chibueze V., Anandakathir, Robinson, Shao-Horn, Yang, and Johnson, Jeremiah A. Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes. United States: N. p., 2017. Web. doi:10.1039/c7ta08321a.
Feng, Shuting, Chen, Mao, Giordano, Livia, Huang, Mingjun, Zhang, Wenxu, Amanchukwu, Chibueze V., Anandakathir, Robinson, Shao-Horn, Yang, & Johnson, Jeremiah A. Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes. United States. doi:10.1039/c7ta08321a.
Feng, Shuting, Chen, Mao, Giordano, Livia, Huang, Mingjun, Zhang, Wenxu, Amanchukwu, Chibueze V., Anandakathir, Robinson, Shao-Horn, Yang, and Johnson, Jeremiah A. Sun . "Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes". United States. doi:10.1039/c7ta08321a.
@article{osti_1493617,
title = {Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes},
author = {Feng, Shuting and Chen, Mao and Giordano, Livia and Huang, Mingjun and Zhang, Wenxu and Amanchukwu, Chibueze V. and Anandakathir, Robinson and Shao-Horn, Yang and Johnson, Jeremiah A.},
abstractNote = {Electrolyte instability is one of the greatest impediments that must be overcome for the practical development of rechargeable aprotic Li–air batteries. In this work, we establish a comprehensive framework for evaluation of the stability of potential organic electrolytes for aprotic Li–air batteries that is based on four key descriptors: Bond dissociation energy, deprotonation free energy (i.e., Acidity), Nucleophilic substitution free energy, and Electrochemical oxidation/reduction. These parameters were calculated for several classes of organic compounds. The chemical stability of the molecules was studied experimentally under conditions designed to mimic the aprotic Li–air battery environment (heating in the presence of excess KO2 and Li2O2). In general, the calculated and experimental data agreed well for alkanes, alkenes, ethers, aromatics, carbonates, and S-containing and N-containing compounds. Using this dataset, we identified functional groups and other structural features of organic molecules that may be suitable for aprotic Li–air battery electrolyte design.},
doi = {10.1039/c7ta08321a},
journal = {Journal of Materials Chemistry A},
issn = {2050-7488},
number = 45,
volume = 5,
place = {United States},
year = {2017},
month = {1}
}

Works referenced in this record:

Single-Ion Solvation Free Energies and the Normal Hydrogen Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide
journal, January 2007

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 2
  • DOI: 10.1021/jp065403l

Charting the known chemical space for non-aqueous lithium–air battery electrolyte solvents
journal, January 2015

  • Husch, Tamara; Korth, Martin
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 35
  • DOI: 10.1039/C5CP02937F

Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
journal, February 2012

  • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2111543

Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications
journal, November 2009

  • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 46, p. 20127-20134
  • DOI: 10.1021/jp908090s

Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes
journal, April 2013

  • Borodin, Oleg; Behl, Wishvender; Jow, T. Richard
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp400527c

Design of Non-aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries
journal, January 2011


Reactive Applications of Cyclic Alkylene Carbonates
journal, February 2003

  • Clements, John H.
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 4
  • DOI: 10.1021/ie020678i

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

Sulfone-Based Electrolytes for Nonaqueous Li–O 2 Batteries
journal, August 2014

  • Bardé, Fanny; Chen, Yuhui; Johnson, Lee
  • The Journal of Physical Chemistry C, Vol. 118, Issue 33
  • DOI: 10.1021/jp5048198

Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes
journal, April 2011


The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes
journal, August 2012

  • Hardwick, Laurence J.; Bruce, Peter G.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 4
  • DOI: 10.1016/j.cossms.2012.04.001

Synthesis and hydrolysis of substituted imidazolinium salts. Behaviour of the degradation products on varying p H
journal, November 1987

  • Fernández, Beatriz M.; Reverdito, Ana M.; Paolucci, Guillermo A.
  • Journal of Heterocyclic Chemistry, Vol. 24, Issue 6
  • DOI: 10.1002/jhet.5570240642

Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories
journal, January 2002

  • Ue, Makoto; Murakami, Akinori; Nakamura, Shinichiro
  • Journal of The Electrochemical Society, Vol. 149, Issue 12
  • DOI: 10.1149/1.1517579

Electrochemical Properties of Quaternary Ammonium Salts for Electrochemical Capacitors
journal, January 1997

  • Ue, Makoto
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837882

The electrochemical behaviour of tetrahydrofuran and propylene carbonate without added electrolyte
journal, May 1990

  • Campbell, S. A.; Bowes, C.; McMillan, R. S.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 284, Issue 1
  • DOI: 10.1016/0022-0728(90)87072-R

Density Functional Theory Study of the Role of Anions on the Oxidative Decomposition Reaction of Propylene Carbonate
journal, December 2011

  • Xing, Lidan; Borodin, Oleg; Smith, Grant D.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 47
  • DOI: 10.1021/jp206153n

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency
journal, November 1992

  • Aurbach, Doron; Gofer, Yosef; Ben-Zion, Moshe
  • Journal of Electroanalytical Chemistry, Vol. 339, Issue 1-2
  • DOI: 10.1016/0022-0728(92)80467-I

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Oxygen Reduction Reaction in Highly Concentrated Electrolyte Solutions of Lithium Bis(trifluoromethanesulfonyl)amide/Dimethyl Sulfoxide
journal, April 2017

  • Tatara, Ryoichi; Kwabi, David G.; Batcho, Thomas P.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 17
  • DOI: 10.1021/acs.jpcc.7b01738

Instability of Ionic Liquid-Based Electrolytes in Li–O 2 Batteries
journal, July 2015

  • Das, Supti; Højberg, Jonathan; Knudsen, Kristian Bastholm
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b04950

Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries
journal, January 2010

  • Lu, Yi-Chun; Gasteiger, Hubert A.; Crumlin, Ethan
  • Journal of The Electrochemical Society, Vol. 157, Issue 9
  • DOI: 10.1149/1.3462981

Electrochemical and Infrared Studies of the Reduction of Organic Carbonates
journal, January 2001

  • Zhang, Xuerong; Kostecki, Robert; Richardson, Thomas J.
  • Journal of The Electrochemical Society, Vol. 148, Issue 12
  • DOI: 10.1149/1.1415547

Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes
journal, February 2011

  • Bryantsev, Vyacheslav S.; Blanco, Mario
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 5
  • DOI: 10.1021/jz1016526

The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries
journal, October 2012


CRC Handbook of Laboratory Safety, 5th Edition
journal, May 2001


Erratum: Li–O2 and Li–S batteries with high energy storage
journal, December 2011

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3237

Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance
journal, February 2006


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes
journal, January 2010


Electrochemical Reduction of Oxygen in Some Hydrophobic Room-Temperature Molten Salt Systems
journal, January 2004

  • Katayama, Yasushi; Onodera, Hokuto; Yamagata, Masaki
  • Journal of The Electrochemical Society, Vol. 151, Issue 1
  • DOI: 10.1149/1.1626669

Structural and Electrochemical Properties of Li Ion Solvation Complexes in the Salt-Concentrated Electrolytes Using an Aprotic Donor Solvent, N , N -Dimethylformamide
journal, July 2016

  • Fujii, Kenta; Wakamatsu, Hideaki; Todorov, Yanko
  • The Journal of Physical Chemistry C, Vol. 120, Issue 31
  • DOI: 10.1021/acs.jpcc.6b04542

On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery
journal, August 2014

  • Adams, Brian D.; Black, Robert; Williams, Zack
  • Advanced Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aenm.201400867

Computation of Thermodynamic Oxidation Potentials of Organic Solvents Using Density Functional Theory
journal, January 2001

  • Zhang, Xuerong; Pugh, James K.; Ross, Philip N.
  • Journal of The Electrochemical Society, Vol. 148, Issue 5
  • DOI: 10.1149/1.1362546

Oxidation potentials of electrolyte solutions for lithium cells
journal, January 1988


The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries
journal, November 2012

  • Bryantsev, Vyacheslav S.; Uddin, Jasim; Giordani, Vincent
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.027302jes

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective
journal, April 2012

  • Shao, Yuyan; Park, Sehkyu; Xiao, Jie
  • ACS Catalysis, Vol. 2, Issue 5, p. 844-857
  • DOI: 10.1021/cs300036v

Characterising the Electronic Structure of Ionic Liquids: An Examination of the 1-Butyl-3-Methylimidazolium Chloride Ion Pair
journal, September 2006

  • Hunt, Patricia A.; Kirchner, Barbara; Welton, Tom
  • Chemistry - A European Journal, Vol. 12, Issue 26
  • DOI: 10.1002/chem.200600103

Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model
journal, March 1998

  • Barone, Vincenzo; Cossi, Maurizio
  • The Journal of Physical Chemistry A, Vol. 102, Issue 11
  • DOI: 10.1021/jp9716997

Understanding the Chemical Stability of Polymers for Lithium–Air Batteries
journal, January 2015

  • Amanchukwu, Chibueze V.; Harding, Jonathon R.; Shao-Horn, Yang
  • Chemistry of Materials, Vol. 27, Issue 2
  • DOI: 10.1021/cm5040003

Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries
journal, August 2016


Stability of polymer binders in Li–O 2 batteries
journal, December 2013


Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes
journal, November 2011


Toward Reliable Values of Electrochemical Stability Limits for Electrolytes
journal, January 1999

  • Xu, Kang
  • Journal of The Electrochemical Society, Vol. 146, Issue 11
  • DOI: 10.1149/1.1392609

Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries
journal, June 2012

  • Bryantsev, Vyacheslav S.; Faglioni, Francesco
  • The Journal of Physical Chemistry A, Vol. 116, Issue 26
  • DOI: 10.1021/jp301537w

The Lithium-Oxygen Battery with Ether-Based Electrolytes
journal, July 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Drewett, Nicholas E.
  • Angewandte Chemie International Edition, Vol. 50, Issue 37, p. 8609-8613
  • DOI: 10.1002/anie.201102357

Hydrocarbon Bond Dissociation Energies
journal, October 1982


Li–O 2 Battery with a Dimethylformamide Electrolyte
journal, April 2012

  • Chen, Yuhui; Freunberger, Stefan A.; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 134, Issue 18
  • DOI: 10.1021/ja302178w

Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O 2 •– )
journal, November 2011

  • Bryantsev, Vyacheslav S.; Giordani, Vincent; Walker, Wesley
  • The Journal of Physical Chemistry A, Vol. 115, Issue 44
  • DOI: 10.1021/jp2073914

Reactivity of the Ionic Liquid Pyr 14 TFSI with Superoxide Radicals Generated from KO 2 or by Contact of O 2 with Li 7 Ti 5 O 12
journal, January 2015

  • Schwenke, K. Uta; Herranz, Juan; Gasteiger, Hubert A.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0241506jes

Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries
journal, February 2016


Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Instability of Poly(ethylene oxide) upon Oxidation in Lithium–Air Batteries
journal, March 2015

  • Harding, Jonathon R.; Amanchukwu, Chibueze V.; Hammond, Paula T.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 13
  • DOI: 10.1021/jp511794g

The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts
journal, January 1991

  • Aurbach, D.; Daroux, M.; Faguy, P.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 297, Issue 1
  • DOI: 10.1016/0022-0728(91)85370-5

Chemical Instability of Dimethyl Sulfoxide in Lithium–Air Batteries
journal, August 2014

  • Kwabi, David G.; Batcho, Thomas P.; Amanchukwu, Chibueze V.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 16
  • DOI: 10.1021/jz5013824

Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model
journal, April 2003

  • Cossi, Maurizio; Rega, Nadia; Scalmani, Giovanni
  • Journal of Computational Chemistry, Vol. 24, Issue 6
  • DOI: 10.1002/jcc.10189