skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-metal oxide ceramic nanomaterial

Abstract

A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

Inventors:
; ;
Publication Date:
Research Org.:
Research Foundation of the City University of New York, New York, NY (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1493310
Patent Number(s):
10,118,862
Application Number:
15/083,885
Assignee:
Research Foundation of the City University of New York (New York, NY)
DOE Contract Number:  
AR0000114
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Mar 29
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

O'Brien, Stephen, Liu, Shuangyi, and Huang, Limin. Multi-metal oxide ceramic nanomaterial. United States: N. p., 2018. Web.
O'Brien, Stephen, Liu, Shuangyi, & Huang, Limin. Multi-metal oxide ceramic nanomaterial. United States.
O'Brien, Stephen, Liu, Shuangyi, and Huang, Limin. Tue . "Multi-metal oxide ceramic nanomaterial". United States. https://www.osti.gov/servlets/purl/1493310.
@article{osti_1493310,
title = {Multi-metal oxide ceramic nanomaterial},
author = {O'Brien, Stephen and Liu, Shuangyi and Huang, Limin},
abstractNote = {A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.},
doi = {},
url = {https://www.osti.gov/biblio/1493310}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {11}
}

Patent:

Save / Share:

Works referenced in this record:

Gels from Modified Zirconium N -Butoxide:  A Pyrolysis Study by Coupled Thermogravimetry, Gas Chromatographic, and Mass Spectrometric Analyses
journal, December 1998


Nonaqueous and Halide-Free Route to Crystalline BaTiO 3 , SrTiO 3 , and (Ba,Sr)TiO 3 Nanoparticles via a Mechanism Involving C−C Bond Formation
journal, July 2004


High K Capacitors and OFET Gate Dielectrics from Self-Assembled BaTiO 3 and (Ba,Sr)TiO 3 Nanocrystals in the Superparaelectric Limit
journal, February 2010


Large-scale engineered synthesis of BaTiO3 nanoparticles using low-temperature bioinspired principles
journal, January 2011


Template-Free, Low-Temperature Synthesis of Crystalline Barium Titanate Nanoparticles under Bio-Inspired Conditions
journal, October 2006


Preparation and characterization of Co-doped BaTiO3 nanosized powders and ceramics
journal, August 2006