skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Emergent room temperature polar phase in CaTiO 3 nanoparticles and single crystals

Abstract

Polar instabilities are well known to be suppressed on scaling materials down to the nanoscale, when the electrostatic energy increase at surfaces exceeds lowering of the bulk polarization energy. Surprisingly, here we report an emergent low symmetry polar phase arising in nanoscale powders of CaTiO 3, the original mineral named perovskite discovered in 1839 and considered nominally nonpolar at any finite temperature in the bulk. Using nonlinear optics and spectroscopy, X-ray diffraction, and microscopy studies, we discover a well-defined polar to non-polar transition at a T C = 350 K in these powders. The same polar phase is also seen as a surface layer in bulk CaTiO 3 single crystals, forming striking domains with in-plane polarization orientations. Density functional theory reveals that oxygen octahedral distortions in the surface layer lead to the stabilization of the observed monoclinic polar phase. These results reveal new ways of overcoming the scaling limits to polarization in perovskites.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [2]; ORCiD logo [4];  [5];  [2];  [1];  [2];  [6]; ORCiD logo [1];  [2];  [2]; ORCiD logo [5];  [7]; ORCiD logo [1]; ORCiD logo [8]; ORCiD logo [2]
  1. Univ. Autonoma de Madrid, Madrid (Spain). Dept. Fisica de Materiales, Inst. Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC)
  2. Pennsylvania State Univ., University Park, PA (United States). Dept. of Material Sciences and Engineering
  3. Univ. of Surrey, Guildford (United Kingdom). Advanced Technology Inst., Dept. of Electrical and Electronic Engineering
  4. Univ. of Bern, Bern (Switzerland). Dept. of Chemistry and Biochemistry
  5. Polish Academy of Sciences (PAS), Warsaw (Poland). Inst. of Low Temperature and Structure Research
  6. Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials
  7. Inst. de Ciencia de Materiales de Madrid, ICMM, (CSIC), Madrid (Spain)
  8. Federal Inst. of Technology, Zurich (Switzerland). Materials Theory
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); Spanish Ministerio de Economia y Competitividad (MINECO); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1492695
Grant/Contract Number:  
AC02-06CH11357; DMR-1420620; DMR-1807768; SC0012375
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Raman; polar; CaTiO3; ferroelectric; second harmonic generation

Citation Formats

Ramirez, Mariola O., Lummen, Tom T. A., Carrasco, Irene, Barnes, Eftihia, Aschauer, Ulrich, Stefanska, Dagmara, Sen Gupta, Arnab, de las Heras, Carmen, Akamatsu, Hirofumi, Holt, Martin, Molina, Pablo, Barnes, Andrew, Haislmaier, Ryan C., Deren, Przemyslaw J., Prieto, Carlos, Bausá, Luisa E., Spaldin, Nicola A., and Gopalan, Venkatraman. Emergent room temperature polar phase in CaTiO3 nanoparticles and single crystals. United States: N. p., 2019. Web. doi:10.1063/1.5078706.
Ramirez, Mariola O., Lummen, Tom T. A., Carrasco, Irene, Barnes, Eftihia, Aschauer, Ulrich, Stefanska, Dagmara, Sen Gupta, Arnab, de las Heras, Carmen, Akamatsu, Hirofumi, Holt, Martin, Molina, Pablo, Barnes, Andrew, Haislmaier, Ryan C., Deren, Przemyslaw J., Prieto, Carlos, Bausá, Luisa E., Spaldin, Nicola A., & Gopalan, Venkatraman. Emergent room temperature polar phase in CaTiO3 nanoparticles and single crystals. United States. doi:10.1063/1.5078706.
Ramirez, Mariola O., Lummen, Tom T. A., Carrasco, Irene, Barnes, Eftihia, Aschauer, Ulrich, Stefanska, Dagmara, Sen Gupta, Arnab, de las Heras, Carmen, Akamatsu, Hirofumi, Holt, Martin, Molina, Pablo, Barnes, Andrew, Haislmaier, Ryan C., Deren, Przemyslaw J., Prieto, Carlos, Bausá, Luisa E., Spaldin, Nicola A., and Gopalan, Venkatraman. Tue . "Emergent room temperature polar phase in CaTiO3 nanoparticles and single crystals". United States. doi:10.1063/1.5078706. https://www.osti.gov/servlets/purl/1492695.
@article{osti_1492695,
title = {Emergent room temperature polar phase in CaTiO3 nanoparticles and single crystals},
author = {Ramirez, Mariola O. and Lummen, Tom T. A. and Carrasco, Irene and Barnes, Eftihia and Aschauer, Ulrich and Stefanska, Dagmara and Sen Gupta, Arnab and de las Heras, Carmen and Akamatsu, Hirofumi and Holt, Martin and Molina, Pablo and Barnes, Andrew and Haislmaier, Ryan C. and Deren, Przemyslaw J. and Prieto, Carlos and Bausá, Luisa E. and Spaldin, Nicola A. and Gopalan, Venkatraman},
abstractNote = {Polar instabilities are well known to be suppressed on scaling materials down to the nanoscale, when the electrostatic energy increase at surfaces exceeds lowering of the bulk polarization energy. Surprisingly, here we report an emergent low symmetry polar phase arising in nanoscale powders of CaTiO3, the original mineral named perovskite discovered in 1839 and considered nominally nonpolar at any finite temperature in the bulk. Using nonlinear optics and spectroscopy, X-ray diffraction, and microscopy studies, we discover a well-defined polar to non-polar transition at a TC = 350 K in these powders. The same polar phase is also seen as a surface layer in bulk CaTiO3 single crystals, forming striking domains with in-plane polarization orientations. Density functional theory reveals that oxygen octahedral distortions in the surface layer lead to the stabilization of the observed monoclinic polar phase. These results reveal new ways of overcoming the scaling limits to polarization in perovskites.},
doi = {10.1063/1.5078706},
journal = {APL Materials},
number = 1,
volume = 7,
place = {United States},
year = {Tue Jan 22 00:00:00 EST 2019},
month = {Tue Jan 22 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Room-temperature ferroelectricity in strained SrTiO3
journal, August 2004

  • Haeni, J. H.; Irvin, P.; Chang, W.
  • Nature, Vol. 430, Issue 7001, p. 758-761
  • DOI: 10.1038/nature02773

Ferroelectricity in Ultrathin Perovskite Films
journal, June 2004

  • Fong, Dillon D.; Stephenson, G. Brian; Streiffer, Stephen K.
  • Science, Vol. 304, Issue 5677, p. 1650-1653
  • DOI: 10.1126/science.1098252