skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel

Abstract

The electrochemical properties of NaNi0.5Co0.5O2 and NaNi0.5Fe0.5O2 and their structural transitions as a function of Na extraction associated with redox reactions are investigated in this work. Synthesized in the O3-type layered structure, both materials show reasonable electrochemical activities at room temperature, delivering approximately 0.5 Na per formula unit at C/10 discharge. More Na can be reversibly cycled in NaNi0.5Co0.5O2 at elevated temperature and/or in an extended voltage window, while NaNi0.5Fe0.5O2 shows significant capacity fading at a high voltage cutoff which is likely due to Fe4+ migration. In situ X-ray diffraction shows that the structural changes in the two materials upon desodiation are very different. NaNi0.5Co0.5O2 goes through many different two-phase reactions including three different O3-type and three different P3-type structures during cycling, producing a voltage profile with multiple plateau-like features. In contrast, NaNi0.5Fe0.5O2 has a smooth voltage profile and shows the typical O3–P3 phase transition without lattice distortion seen in other materials. This different structural evolution upon desodiation and re-sodiation can be explained by the electronic structure of the mixed transition metals and how it perturbs the ordering between Na ions differently.

Authors:
 [1];  [2];  [1];  [2];  [2];  [3]; ORCiD logo [4]
  1. Department of Materials Science and Engineering; Massachusetts Institute of Technology; Cambridge; USA
  2. Department of Materials Science and Engineering; University of California; Berkeley; USA
  3. Department of Materials Science and Engineering; Massachusetts Institute of Technology; Cambridge; USA; Department of Materials Science and Engineering
  4. Materials Sciences Division; Lawrence Berkeley National Laboratory; Berkeley; USA
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1492056
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 9; Journal ID: ISSN 2050-7488
Country of Publication:
United States
Language:
English

Citation Formats

Vassilaras, Plousia, Kwon, Deok-Hwang, Dacek, Stephen T., Shi, Tan, Seo, Dong-Hwa, Ceder, Gerbrand, and Kim, Jae Chul. Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. United States: N. p., 2017. Web. doi:10.1039/c6ta09220a.
Vassilaras, Plousia, Kwon, Deok-Hwang, Dacek, Stephen T., Shi, Tan, Seo, Dong-Hwa, Ceder, Gerbrand, & Kim, Jae Chul. Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. United States. doi:10.1039/c6ta09220a.
Vassilaras, Plousia, Kwon, Deok-Hwang, Dacek, Stephen T., Shi, Tan, Seo, Dong-Hwa, Ceder, Gerbrand, and Kim, Jae Chul. Sun . "Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel". United States. doi:10.1039/c6ta09220a.
@article{osti_1492056,
title = {Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel},
author = {Vassilaras, Plousia and Kwon, Deok-Hwang and Dacek, Stephen T. and Shi, Tan and Seo, Dong-Hwa and Ceder, Gerbrand and Kim, Jae Chul},
abstractNote = {The electrochemical properties of NaNi0.5Co0.5O2 and NaNi0.5Fe0.5O2 and their structural transitions as a function of Na extraction associated with redox reactions are investigated in this work. Synthesized in the O3-type layered structure, both materials show reasonable electrochemical activities at room temperature, delivering approximately 0.5 Na per formula unit at C/10 discharge. More Na can be reversibly cycled in NaNi0.5Co0.5O2 at elevated temperature and/or in an extended voltage window, while NaNi0.5Fe0.5O2 shows significant capacity fading at a high voltage cutoff which is likely due to Fe4+ migration. In situ X-ray diffraction shows that the structural changes in the two materials upon desodiation are very different. NaNi0.5Co0.5O2 goes through many different two-phase reactions including three different O3-type and three different P3-type structures during cycling, producing a voltage profile with multiple plateau-like features. In contrast, NaNi0.5Fe0.5O2 has a smooth voltage profile and shows the typical O3–P3 phase transition without lattice distortion seen in other materials. This different structural evolution upon desodiation and re-sodiation can be explained by the electronic structure of the mixed transition metals and how it perturbs the ordering between Na ions differently.},
doi = {10.1039/c6ta09220a},
journal = {Journal of Materials Chemistry. A},
issn = {2050-7488},
number = 9,
volume = 5,
place = {United States},
year = {2017},
month = {1}
}

Works referenced in this record:

Layered-to-Rock-Salt Transformation in Desodiated Na x CrO 2 ( x 0.4)
journal, February 2016


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Electrochemical Na-Deintercalation from NaVO2
journal, January 2011

  • Didier, C.; Guignard, M.; Denage, C.
  • Electrochemical and Solid-State Letters, Vol. 14, Issue 5
  • DOI: 10.1149/1.3555102

Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells
journal, January 2003

  • Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613291

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell
journal, December 2000

  • Cho, Jaephil; Kim, Yong Jeong; Park, Byungwoo
  • Chemistry of Materials, Vol. 12, Issue 12, p. 3788-3791
  • DOI: 10.1021/cm000511k

Non-cooperative Jahn-Teller effect in LiNiO2: An EXAFS study
journal, April 1995


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Projector augmented-wave method
journal, December 1994


Review—Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials
journal, January 2015

  • Clément, Raphaële J.; Bruce, Peter G.; Grey, Clare P.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0201514jes

Sodium deintercalation from sodium iron oxide
journal, June 1994


Effect of Cobalt Substitution on the Jahn-Teller Distortion of the NaNiO 2 Layered Oxide
journal, April 1994

  • Delmas, C.; Saadoune, I.; Dordor, P.
  • Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, Vol. 244, Issue 1
  • DOI: 10.1080/10587259408050127

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

On the LixNi0.8Co0.2O2System
journal, February 1998


The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Study on the Reversible Electrode Reaction of Na 1– x Ni 0.5 Mn 0.5 O 2 for a Rechargeable Sodium-Ion Battery
journal, May 2012

  • Komaba, Shinichi; Yabuuchi, Naoaki; Nakayama, Tetsuri
  • Inorganic Chemistry, Vol. 51, Issue 11
  • DOI: 10.1021/ic300357d

Electrochemical intercalation of sodium in NaxCoO2 bronzes
journal, August 1981


An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties
journal, September 1999


Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries
journal, January 2012


Synthesis, Computed Stability, and Crystal Structure of a New Family of Inorganic Compounds: Carbonophosphates
journal, November 2012

  • Chen, Hailong; Hautier, Geoffroy; Ceder, Gerbrand
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja3040834

In Situ X-Ray Absorption Studies of a High-Rate LiNi[sub 0.85]Co[sub 0.15]O[sub 2] Cathode Material
journal, January 2000

  • Balasubramanian, M.; Sun, X.; Yang, X. Q.
  • Journal of The Electrochemical Society, Vol. 147, Issue 8
  • DOI: 10.1149/1.1393624

Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
journal, January 2011

  • Ong, Shyue Ping; Chevrier, Vincent L.; Hautier, Geoffroy
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01782a

Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Effect of iron on the electrochemical behaviour of lithium nickelate: from LiNiO2 to 2D-LiFeO2
journal, November 2000


Ordered and Disordered Polymorphs of Na(Ni 2/3 Sb 1/3 )O 2 : Honeycomb-Ordered Cathodes for Na-Ion Batteries
journal, March 2015

  • Ma, Jeffrey; Bo, Shou-Hang; Wu, Lijun
  • Chemistry of Materials, Vol. 27, Issue 7
  • DOI: 10.1021/cm504339y

Oxidation state and chemical shift investigation in transition metal oxides by EELS
journal, May 2012


Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2
journal, May 2014

  • Li, Xin; Ma, Xiaohua; Su, Dong
  • Nature Materials, Vol. 13, Issue 6
  • DOI: 10.1038/nmat3964

Rechargeable Electrodes from Sodium Cobalt Bronzes
journal, January 1988

  • Shacklette, L. W.
  • Journal of The Electrochemical Society, Vol. 135, Issue 11
  • DOI: 10.1149/1.2095407

Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]
journal, June 2006

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 124, Issue 21
  • DOI: 10.1063/1.2204597

A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation
journal, January 2012

  • Kim, Sangtae; Ma, Xiaohua; Ong, Shyue Ping
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 44
  • DOI: 10.1039/c2cp43377j

Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application
journal, January 2012


A bio-facilitated synthetic route for nano-structured complex electrode materials
journal, January 2016

  • Moradi, Maryam; Kim, Jae Chul; Qi, Jifa
  • Green Chemistry, Vol. 18, Issue 9
  • DOI: 10.1039/C6GC00273K

Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes
journal, November 2008

  • Kim, Do Kyung; Muralidharan, P.; Lee, Hyun-Wook
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl8024328

O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries
journal, December 2014


Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties
journal, January 2014

  • Islam, M. Saiful; Fisher, Craig A. J.
  • Chem. Soc. Rev., Vol. 43, Issue 1
  • DOI: 10.1039/C3CS60199D

A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides
journal, January 2015

  • Lee, Jinhyuk; Seo, Dong-Hwa; Balasubramanian, Mahalingam
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE02329G

Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds
journal, August 2010


Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

Electrochemical Properties of Monoclinic NaNiO 2
journal, November 2012

  • Vassilaras, Plousia; Ma, Xiaohua; Li, Xin
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.023302jes

High-Performance P2-Type Na 2/3 (Mn 1/2 Fe 1/4 Co 1/4 )O 2 Cathode Material with Superior Rate Capability for Na-Ion Batteries
journal, September 2015


Combined First-Principle Calculations and Experimental Study on Multi-Component Olivine Cathode for Lithium Rechargeable Batteries
journal, October 2009

  • Gwon, Hyeokjo; Seo, Dong-Hwa; Kim, Sung-Wook
  • Advanced Functional Materials, Vol. 19, Issue 20
  • DOI: 10.1002/adfm.200900414

In situ XAFS analysis of the LixNi0.8Co0.2O2 cathode during cycling in lithium batteries
journal, July 2002


Structure and Properties of Alkali Cobalt Double Oxides A 0.6 CoO 2 (A = Li, Na, and K)
journal, October 2009

  • Pollet, Michaël; Blangero, Maxime; Doumerc, Jean-Pierre
  • Inorganic Chemistry, Vol. 48, Issue 20
  • DOI: 10.1021/ic900386q

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Vacancy Ordering in O 3 -Type Layered Metal Oxide Sodium-Ion Battery Cathodes
journal, December 2015


On the NaxNi0.6Co0.4O2System: Physical and Electrochemical Studies
journal, February 1996

  • Saadoune, I.; Maazaz, A.; Ménétrier, M.
  • Journal of Solid State Chemistry, Vol. 122, Issue 1
  • DOI: 10.1006/jssc.1996.0090

Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries
journal, January 2014


Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries
journal, June 2013

  • Masquelier, Christian; Croguennec, Laurence
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr3001862

Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations
journal, September 2014

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 26, Issue 18
  • DOI: 10.1021/cm501563f

Redox Potential Paradox in Na x MO 2 for Sodium-Ion Battery Cathodes
journal, February 2016


Electrochemical Properties of Monoclinic NaMnO2
journal, January 2011

  • Ma, Xiaohua; Chen, Hailong; Ceder, Gerbrand
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.035112jes

Strain Accommodation during Phase Transformations in Olivine-Based Cathodes as a Materials Selection Criterion for High-Power Rechargeable Batteries
journal, March 2007

  • Meethong, N.; Huang, H. -Y. S.; Speakman, S. A.
  • Advanced Functional Materials, Vol. 17, Issue 7
  • DOI: 10.1002/adfm.200600938

Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials
journal, January 2004

  • Morgan, D.; Van der Ven, A.; Ceder, G.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 2
  • DOI: 10.1149/1.1633511

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


The Spinel Phase of LiMn[sub 2]O[sub 4] as a Cathode in Secondary Lithium Cells
journal, January 1991

  • Tarascon, J. M.
  • Journal of The Electrochemical Society, Vol. 138, Issue 10
  • DOI: 10.1149/1.2085330

White lines and d -band occupancy for the 3 d transition-metal oxides and lithium transition-metal oxides
journal, June 2004


Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells
journal, September 2006


Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Lithium insertion into manganese spinels
journal, April 1983

  • Thackeray, M. M.; David, W. I. F.; Bruce, P. G.
  • Materials Research Bulletin, Vol. 18, Issue 4, p. 461-472
  • DOI: 10.1016/0025-5408(83)90138-1

Phase Transitions and High-Voltage Electrochemical Behavior of LiCoO[sub 2] Thin Films Grown by Pulsed Laser Deposition
journal, January 2007

  • Xia, H.; Lu, L.; Meng, Y. S.
  • Journal of The Electrochemical Society, Vol. 154, Issue 4
  • DOI: 10.1149/1.2509021

Identification of cathode materials for lithium batteries guided by first-principles calculations
journal, April 1998

  • Ceder, G.; Chiang, Y. -M.; Sadoway, D. R.
  • Nature, Vol. 392, Issue 6677
  • DOI: 10.1038/33647

NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries
journal, September 2013


Iron-Substituted Nickel Oxyhydroxides and Hydroxides Obtained by Chimie Douce
journal, June 1993

  • Demourgues-Guerlou, L.; Braconnier, J. J.; Delmas, C.
  • Journal of Solid State Chemistry, Vol. 104, Issue 2
  • DOI: 10.1006/jssc.1993.1171

Formation enthalpies by mixing GGA and GGA + U calculations
journal, July 2011


Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO 2 –NaNiO 2 Solid Solution for Enhanced Electrochemical Properties
journal, January 2014

  • Wang, Xianfen; Liu, Guandong; Iwao, Tatsumi
  • The Journal of Physical Chemistry C, Vol. 118, Issue 6
  • DOI: 10.1021/jp411382r

Investigation of the NaNi x Mn 1-x O 2 (0 ≤ x ≤ 1) System for Na-Ion Battery Cathode Materials
journal, December 2014

  • Fielden, R.; Obrovac, M. N.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0551503jes

Analysis of Charged State Stability for Monoclinic LiMnBO 3 Cathode
journal, July 2014

  • Kim, Jae Chul; Li, Xin; Moore, Charles J.
  • Chemistry of Materials, Vol. 26, Issue 14
  • DOI: 10.1021/cm5014174

A high-throughput infrastructure for density functional theory calculations
journal, June 2011


Li2Fe(SO4)2 as a 3.83V positive electrode material
journal, July 2012


P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Theoretical capacity achieved in a LiMn 0.5 Fe 0.4 Mg 0.1 BO 3 cathode by using topological disorder
journal, January 2015

  • Kim, Jae Chul; Seo, Dong-Hwa; Ceder, Gerbrand
  • Energy & Environmental Science, Vol. 8, Issue 6
  • DOI: 10.1039/C5EE00930H

Electrochemical intercalation and deintercalation of NaxMnO2 bronzes
journal, May 1985


Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


The Effect of Antisite Disorder and Particle Size on Li Intercalation Kinetics in Monoclinic LiMnBO 3
journal, January 2015

  • Kim, Jae Chul; Seo, Dong-Hwa; Chen, Hailong
  • Advanced Energy Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aenm.201401916

Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi 1 / 3 Mn 1 / 3 Co 1 / 3 O 2
journal, April 2012

  • Sathiya, M.; Hemalatha, K.; Ramesha, K.
  • Chemistry of Materials, Vol. 24, Issue 10
  • DOI: 10.1021/cm300466b

Synthesis and electrochemistry of new layered (1−x)LiVO2·xLi2TiO3 (0≤x≤0.6) electrode materials
journal, December 2007


Structural classification and properties of the layered oxides
journal, January 1980


Electronic Structure of Transition Metal Ions in Deintercalated and Reintercalated LiCo[sub 0.5]Ni[sub 0.5]O[sub 2]
journal, January 2000

  • Montoro, L. A.; Abbate, M.; Rosolen, J. M.
  • Journal of The Electrochemical Society, Vol. 147, Issue 5
  • DOI: 10.1149/1.1393412

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries
journal, September 2016


Sulfate-Based Polyanionic Compounds for Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects
journal, September 2013

  • Rousse, G.; Tarascon, J. M.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4022358

Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2
journal, August 1982


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


A Combined Computational/Experimental Study on LiNi 1/3 Co 1/3 Mn 1/3 O 2
journal, September 2003

  • Hwang, B. J.; Tsai, Y. W.; Carlier, D.
  • Chemistry of Materials, Vol. 15, Issue 19
  • DOI: 10.1021/cm030299v

Structure and Electrochemistry of Na x Fe x Ti 1-x O 2 (1.0 ≥ x ≥ 0.75) for Na-Ion Battery Positive Electrodes
journal, January 2014

  • Thorne, J. S.; Chowdhury, S.; Dunlap, R. A.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0291412jes

Porous Electrode Materials for Lithium-Ion Batteries - How to Prepare Them and What Makes Them Special
journal, August 2012

  • Vu, Anh; Qian, Yuqiang; Stein, Andreas
  • Advanced Energy Materials, Vol. 2, Issue 9
  • DOI: 10.1002/aenm.201200320

    Works referencing / citing this record:

    Ni-based cathode materials for Na-ion batteries
    journal, June 2019