skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sequential Infiltration Synthesis of Al 2O 3 in Polyethersulfone Membranes

Abstract

We report the sequential infiltration synthesis (SIS) of aluminum oxide (Al 2O 3) into polyethersulfone (PES) ultrafiltration (UF) membranes to form hybrid nanocomposites. SIS relies on chemical interactions between precursor vapors and polymer functional groups, and enables nucleation and growth of inorganic materials to controlled depth. Using in situ Fourier-transform infrared spectroscopy and ellipsometry measurements, we demonstrate that trimethylaluminum associates with the sulfonyl groups in PES, extending the library of SIS-modified polymer nanocomposites to a previously undescribed polymer system and new application space: PES UF membranes. Depth-profiled x-ray photoelectron spectroscopy showed that the trimethylaluminum purge time dictates the extent of Al 2O 3 infiltration. Energy dispersive spectroscopy revealed the differences between SIS and atomic layer deposition in the membranes. Furthermore, this work demonstrates the viability of SIS to access the entire macroporous volume of PES UF membranes.

Authors:
 [1];  [2];  [2];  [2];  [1];  [2];  [1]
  1. Univ. of Chicago, Chicago, IL (United States); Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; University of Chicago, Materials Research Science & Engineering Center (MRSEC)
OSTI Identifier:
1491458
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
JOM. Journal of the Minerals, Metals & Materials Society
Additional Journal Information:
Journal Volume: 71; Journal Issue: 1; Journal ID: ISSN 1047-4838
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Waldman, Ruben Z., Choudhury, Devika, Mandia, David J., Elam, Jeffrey W., Nealey, Paul F., Martinson, Alex B. F., and Darling, Seth B. Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes. United States: N. p., 2018. Web. doi:10.1007/s11837-018-3142-3.
Waldman, Ruben Z., Choudhury, Devika, Mandia, David J., Elam, Jeffrey W., Nealey, Paul F., Martinson, Alex B. F., & Darling, Seth B. Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes. United States. doi:10.1007/s11837-018-3142-3.
Waldman, Ruben Z., Choudhury, Devika, Mandia, David J., Elam, Jeffrey W., Nealey, Paul F., Martinson, Alex B. F., and Darling, Seth B. Mon . "Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes". United States. doi:10.1007/s11837-018-3142-3. https://www.osti.gov/servlets/purl/1491458.
@article{osti_1491458,
title = {Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes},
author = {Waldman, Ruben Z. and Choudhury, Devika and Mandia, David J. and Elam, Jeffrey W. and Nealey, Paul F. and Martinson, Alex B. F. and Darling, Seth B.},
abstractNote = {We report the sequential infiltration synthesis (SIS) of aluminum oxide (Al2O3) into polyethersulfone (PES) ultrafiltration (UF) membranes to form hybrid nanocomposites. SIS relies on chemical interactions between precursor vapors and polymer functional groups, and enables nucleation and growth of inorganic materials to controlled depth. Using in situ Fourier-transform infrared spectroscopy and ellipsometry measurements, we demonstrate that trimethylaluminum associates with the sulfonyl groups in PES, extending the library of SIS-modified polymer nanocomposites to a previously undescribed polymer system and new application space: PES UF membranes. Depth-profiled x-ray photoelectron spectroscopy showed that the trimethylaluminum purge time dictates the extent of Al2O3 infiltration. Energy dispersive spectroscopy revealed the differences between SIS and atomic layer deposition in the membranes. Furthermore, this work demonstrates the viability of SIS to access the entire macroporous volume of PES UF membranes.},
doi = {10.1007/s11837-018-3142-3},
journal = {JOM. Journal of the Minerals, Metals & Materials Society},
issn = {1047-4838},
number = 1,
volume = 71,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Route to Nanoscopic Materials via Sequential Infiltration Synthesis on Block Copolymer Templates
journal, May 2011

  • Peng, Qing; Tseng, Yu-Chih; Darling, Seth B.
  • ACS Nano, Vol. 5, Issue 6, p. 4600-4606
  • DOI: 10.1021/nn2003234

Enhanced Lithographic Imaging Layer Meets Semiconductor Manufacturing Specification a Decade Early
journal, April 2012

  • Tseng, Yu-Chih; Mane, Anil U.; Elam, Jeffrey W.
  • Advanced Materials, Vol. 24, Issue 19, p. 2608-2613
  • DOI: 10.1002/adma.201104871

Etch properties of resists modified by sequential infiltration synthesis
journal, November 2011

  • Tseng, Yu-Chih; Peng, Qing; Ocola, Leonidas E.
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 29, Issue 6, Article No. 06FG01
  • DOI: 10.1116/1.3640758

Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers
journal, September 2010

  • Peng, Qing; Tseng, Yu-Chih; Darling, Seth B.
  • Advanced Materials, Vol. 22, Issue 45, p. 5129-5133
  • DOI: 10.1002/adma.201002465

Self-Limited Reaction-Diffusion in Nanostructured Substrates: Surface Coverage Dynamics and Analytic Approximations to ALD Saturation Times
journal, March 2012

  • Yanguas-Gil, Angel; Elam, Jeffrey W.
  • Chemical Vapor Deposition, Vol. 18, Issue 1-3, p. 46-52
  • DOI: 10.1002/cvde.201106938