skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A layered Na 1-x Ni y Fe 1-y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting

Abstract

Transition metal Ni- and Co-based oxides are potential candidates to replace expensive and scarce noble metal-based oxygen evolution reaction (OER) catalysts such as IrO 2 and RuO 2, which are required for efficient hydrogen production from solar water splitting and rechargeable energy storage technologies. So far, layered NiFe double hydroxide represents the best OER activity among all Ni- and Co-based oxides. Here, we report new layered Na 1-xNi yFe 1-yO 2 double oxide OER catalysts exhibiting activity and stability surpassing those of noble metal OER catalysts including IrO 2 and RuO 2, and a layered NiFe double hydroxide OER catalyst. The superior catalytic properties can be ascribed to the layered structure as well as the enhanced covalency of Ni and Fe. Powered by a lead halide perovskite solar cell with a power conversion efficiency of 14.69%, a two-electrode solar water-splitting device combining a Na 0.08Ni 0.9Fe 0.1O 2 OER catalyst with a NiP hydrogen evolution reaction catalyst delivers a solar-to-hydrogen conversion efficiency of 11.22%. Our design and fabrication strategies offer insights for developing highly active electrocatalysts for water splitting and metal–air batteries.

Authors:
 [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Univ. of Toledo, OH (United States). Department of Physics and Astronomy and Center for Photovoltaics Innovation and Commercialization
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Science (SC)
OSTI Identifier:
1491013
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English

Citation Formats

Weng, Baicheng, Xu, Fenghua, Wang, Changlei, Meng, Weiwei, Grice, Corey R., and Yan, Yanfa. A layered Na 1-x Ni y Fe 1-y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. United States: N. p., 2017. Web. doi:10.1039/c6ee03088b.
Weng, Baicheng, Xu, Fenghua, Wang, Changlei, Meng, Weiwei, Grice, Corey R., & Yan, Yanfa. A layered Na 1-x Ni y Fe 1-y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. United States. doi:10.1039/c6ee03088b.
Weng, Baicheng, Xu, Fenghua, Wang, Changlei, Meng, Weiwei, Grice, Corey R., and Yan, Yanfa. Sun . "A layered Na 1-x Ni y Fe 1-y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting". United States. doi:10.1039/c6ee03088b.
@article{osti_1491013,
title = {A layered Na 1-x Ni y Fe 1-y O 2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting},
author = {Weng, Baicheng and Xu, Fenghua and Wang, Changlei and Meng, Weiwei and Grice, Corey R. and Yan, Yanfa},
abstractNote = {Transition metal Ni- and Co-based oxides are potential candidates to replace expensive and scarce noble metal-based oxygen evolution reaction (OER) catalysts such as IrO2 and RuO2, which are required for efficient hydrogen production from solar water splitting and rechargeable energy storage technologies. So far, layered NiFe double hydroxide represents the best OER activity among all Ni- and Co-based oxides. Here, we report new layered Na1-xNiyFe1-yO2 double oxide OER catalysts exhibiting activity and stability surpassing those of noble metal OER catalysts including IrO2 and RuO2, and a layered NiFe double hydroxide OER catalyst. The superior catalytic properties can be ascribed to the layered structure as well as the enhanced covalency of Ni and Fe. Powered by a lead halide perovskite solar cell with a power conversion efficiency of 14.69%, a two-electrode solar water-splitting device combining a Na0.08Ni0.9Fe0.1O2 OER catalyst with a NiP hydrogen evolution reaction catalyst delivers a solar-to-hydrogen conversion efficiency of 11.22%. Our design and fabrication strategies offer insights for developing highly active electrocatalysts for water splitting and metal–air batteries.},
doi = {10.1039/c6ee03088b},
journal = {Energy & Environmental Science},
issn = {1754-5692},
number = 1,
volume = 10,
place = {United States},
year = {2017},
month = {1}
}

Works referenced in this record:

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe 4+ by Mössbauer Spectroscopy
journal, November 2015

  • Chen, Jamie Y. C.; Dang, Lianna; Liang, Hanfeng
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b10699

Heterogeneous photocatalyst materials for water splitting
journal, January 2009

  • Kudo, Akihiko; Miseki, Yugo
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B800489G

Li4NiTeO6 as a positive electrode for Li-ion batteries
journal, January 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemical Communications, Vol. 49, Issue 97
  • DOI: 10.1039/c3cc46842a

Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO 2
journal, July 2010


Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

The Future of Energy Supply: Challenges and Opportunities
journal, January 2007

  • Armaroli, Nicola; Balzani, Vincenzo
  • Angewandte Chemie International Edition, Vol. 46, Issue 1-2
  • DOI: 10.1002/anie.200602373

Enhanced oxygen evolution activity by NiO x and Ni(OH) 2 nanoparticles
journal, January 2014


Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution
journal, August 2015

  • Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9106

Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles
journal, April 2014

  • Popczun, Eric J.; Read, Carlos G.; Roske, Christopher W.
  • Angewandte Chemie International Edition, Vol. 53, Issue 21
  • DOI: 10.1002/anie.201402646

Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides
journal, July 2001


Branched Artificial Nanofinger Arrays by Mesoporous Interfacial Atomic Rearrangement
journal, March 2015

  • Kong, Biao; Tang, Jing; Zhang, Yueyu
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/jacs.5b01747

Inorganic Materials as Catalysts for Photochemical Splitting of Water
journal, January 2008


The Nature of Lithium Battery Materials under Oxygen Evolution Reaction Conditions
journal, October 2012

  • Lee, Seung Woo; Carlton, Christopher; Risch, Marcel
  • Journal of the American Chemical Society, Vol. 134, Issue 41
  • DOI: 10.1021/ja307814j

GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting
journal, June 2005

  • Maeda, Kazuhiko; Takata, Tsuyoshi; Hara, Michikazu
  • Journal of the American Chemical Society, Vol. 127, Issue 23
  • DOI: 10.1021/ja0518777

Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides
journal, January 2016

  • Gardner, Graeme; Al-Sharab, Jafar; Danilovic, Nemanja
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE02195B

Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide
journal, September 2015

  • Cabán-Acevedo, Miguel; Stone, Michael L.; Schmidt, J. R.
  • Nature Materials, Vol. 14, Issue 12
  • DOI: 10.1038/nmat4410

An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation
journal, May 2013

  • Gong, Ming; Li, Yanguang; Wang, Hailiang
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja4027715

Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes
journal, January 2010

  • Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.
  • Science, Vol. 327, Issue 5962, p. 185-187
  • DOI: 10.1126/science.1180783

Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Highly Active Mixed-Metal Nanosheet Water Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids
journal, September 2014

  • Hunter, Bryan M.; Blakemore, James D.; Deimund, Mark
  • Journal of the American Chemical Society, Vol. 136, Issue 38
  • DOI: 10.1021/ja506087h

Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction
journal, January 2015

  • Zhu, Chengzhou; Wen, Dan; Leubner, Susanne
  • Chemical Communications, Vol. 51, Issue 37
  • DOI: 10.1039/C5CC01558H

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Layered P2/O3 Intergrowth Cathode: Toward High Power Na-Ion Batteries
journal, July 2014


In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction
journal, December 2015


Structural Requirements in Lithium Cobalt Oxides for the Catalytic Oxidation of Water
journal, January 2012

  • Gardner, Graeme P.; Go, Yong Bok; Robinson, David M.
  • Angewandte Chemie International Edition, Vol. 51, Issue 7
  • DOI: 10.1002/anie.201107625

A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Silicon Nanowire Array Photoelectrochemical Cells
journal, September 2007

  • Goodey, Adrian P.; Eichfeld, Sarah M.; Lew, Kok-Keong
  • Journal of the American Chemical Society, Vol. 129, Issue 41, p. 12344-12345
  • DOI: 10.1021/ja073125d

Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution
journal, August 2015

  • Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8992

Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2
journal, September 2002


Covalency-reinforced oxygen evolution reaction catalyst
journal, September 2015

  • Yagi, Shunsuke; Yamada, Ikuya; Tsukasaki, Hirofumi
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9249

Semiconductor-based Photocatalytic Hydrogen Generation
journal, November 2010

  • Chen, Xiaobo; Shen, Shaohua; Guo, Liejin
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr1001645

Hierarchical structures constructed by BiOX (X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange
journal, November 2014

  • Weng, Baicheng; Xu, Fenghua; Xu, Jianguang
  • Journal of Nanoparticle Research, Vol. 16, Issue 12
  • DOI: 10.1007/s11051-014-2766-7

Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions
journal, May 2014

  • Maiyalagan, Thandavarayan; Jarvis, Karalee A.; Therese, Soosairaj
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4949

A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction
journal, June 2014

  • Long, Xia; Li, Jinkai; Xiao, Shuang
  • Angewandte Chemie International Edition, Vol. 53, Issue 29
  • DOI: 10.1002/anie.201402822

Hydrogen Evolution from Pt/Ru-Coated p-Type WSe 2 Photocathodes
journal, December 2012

  • McKone, James R.; Pieterick, Adam P.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 135, Issue 1
  • DOI: 10.1021/ja308581g

A High-Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo 0.8 Fe 0.2 O 2
journal, October 2015


Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction
journal, August 2011

  • Liang, Yongye; Li, Yanguang; Wang, Hailiang
  • Nature Materials, Vol. 10, Issue 10, p. 780-786
  • DOI: 10.1038/nmat3087

Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces
journal, June 2012

  • Zhang, Zhen; Yates, John T.
  • Chemical Reviews, Vol. 112, Issue 10
  • DOI: 10.1021/cr3000626

Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting
journal, February 2014

  • Chemelewski, William D.; Lee, Heung-Chan; Lin, Jung-Fu
  • Journal of the American Chemical Society, Vol. 136, Issue 7
  • DOI: 10.1021/ja411835a

Nano-photocatalytic Materials: Possibilities and Challenges
journal, October 2011


Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures
journal, June 2009

  • Peng, Zhenmeng; Yang, Hong
  • Journal of the American Chemical Society, Vol. 131, Issue 22
  • DOI: 10.1021/ja902256a

Self-standing non-noble metal (Ni–Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation
journal, January 2015

  • Zhao, Zhenlu; Wu, Haoxi; He, Haili
  • Journal of Materials Chemistry A, Vol. 3, Issue 13
  • DOI: 10.1039/C5TA00160A

High-Rate Oxygen Evolution Reaction on Al-Doped LiNiO 2
journal, August 2015

  • Gupta, Asha; Chemelewski, William D.; Buddie Mullins, C.
  • Advanced Materials, Vol. 27, Issue 39
  • DOI: 10.1002/adma.201502256

Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays
journal, January 2011

  • Boettcher, Shannon W.; Warren, Emily L.; Putnam, Morgan C.
  • Journal of the American Chemical Society, Vol. 133, Issue 5, p. 1216-1219
  • DOI: 10.1021/ja108801m

Development of alternative photocatalysts to TiO2: Challenges and opportunities
journal, January 2009

  • Hernández-Alonso, María D.; Fresno, Fernando; Suárez, Silvia
  • Energy & Environmental Science, Vol. 2, Issue 12
  • DOI: 10.1039/b907933e

Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
journal, September 2009

  • Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.
  • Nature Chemistry, Vol. 1, Issue 7, p. 552-556
  • DOI: 10.1038/nchem.367

Cover Picture: Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions (Angew. Chem. Int. Ed. 1/2015)
journal, December 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201410930