skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers

Abstract

In this work, we have measured the properties of membrane-suspended bolometer thermal links and microstrip transmission lines in the transition-edge sensor arrays for the third-generation camera for South Pole Telescope (SPT-3G). A promising technique for controlling the end point of the release etch that defines the thermal link has been developed. We have also evaluated the microstrip loss in our detectors by measuring the optical efficiency of detectors with different lengths of microstrip line. The loss tangent is sufficiently low for the use in multi-chronic pixels for cosmic microwave background instruments like SPT-3G.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [4];  [9];  [8];  [1];  [10];  [11];  [6];  [5];  [6];  [1];  [12];  [13] more »;  [14];  [15];  [1];  [11];  [6];  [14];  [16];  [6];  [7];  [5];  [6];  [6];  [3];  [6];  [17];  [1];  [18];  [15];  [17];  [1];  [3];  [19];  [7];  [20];  [21];  [1];  [11];  [18];  [22];  [17];  [11];  [1];  [7];  [13];  [1];  [1];  [4];  [15];  [8];  [14];  [6];  [13];  [23];  [13];  [1];  [24];  [25];  [26];  [13];  [3];  [2];  [5];  [22];  [18];  [1];  [27];  [1];  [3];  [28] « less
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Cardiff Univ. (United Kingdom)
  3. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP)
  5. National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
  6. Univ. of California, Berkeley, CA (United States)
  7. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP)
  8. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Argonne National Lab. (ANL), Argonne, IL (United States)
  9. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States); Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  10. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States)
  11. McGill Univ., Montreal, QC (Canada)
  12. McGill Univ., Montreal, QC (Canada); Canadian Inst. for Advanced Research, Toronto (Canada)
  13. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States)
  14. Univ. of Colorado, Boulder, CO (United States)
  15. Case Western Reserve Univ., Cleveland, OH (United States)
  16. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana, IL (United States)
  17. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  18. Univ. of Illinois, Urbana, IL (United States)
  19. Univ. of California, Berkeley, CA (United States); Univ. of Illinois, Urbana, IL (United States)
  20. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States). Enrico Fermi Inst.; Univ. of Chicago, IL (United States)
  21. Univ. of Chicago, IL (United States)
  22. Univ. of Toronto, ON (Canada)
  23. Three-Speed Logic, Inc.,Vancouver, BC (Canada)
  24. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  25. Stanford Univ., CA (United States)
  26. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  27. Univ. of California, Berkeley, CA (United States); Univ. of California, Los Angeles, CA (United States)
  28. Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
SPT
OSTI Identifier:
1490492
Alternate Identifier(s):
OSTI ID: 1488563; OSTI ID: 1496027
Report Number(s):
FERMILAB-PUB-18-737-AE
Journal ID: ISSN 0022-2291; PII: 1907
Grant/Contract Number:  
AC02-76SF00515; PLR-1248097; PHY- 1125897; AST- 0956135; AC02- 06CH11357; GBMF 947; AC02-07CH11359; AC02-06CH11357; PHY-1125897
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Low Temperature Physics
Additional Journal Information:
Journal Volume: 193; Journal Issue: 5-6; Journal ID: ISSN 0022-2291
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Cosmic microwave background; Microstrip loss; South Pole Telescope; Transition-edge sensor; XeF2 etch; 79 ASTRONOMY AND ASTROPHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Ding, J., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Carter, F. W., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Divan, R., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stan, L., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., and Young, M. R.. Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers. United States: N. p., 2018. Web. doi:10.1007/s10909-018-1907-2.
Ding, J., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Carter, F. W., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Divan, R., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stan, L., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., & Young, M. R.. Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers. United States. https://doi.org/10.1007/s10909-018-1907-2
Ding, J., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Carter, F. W., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Divan, R., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stan, L., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., and Young, M. R.. 2018. "Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers". United States. https://doi.org/10.1007/s10909-018-1907-2. https://www.osti.gov/servlets/purl/1490492.
@article{osti_1490492,
title = {Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers},
author = {Ding, J. and Ade, P. A. R. and Ahmed, Z. and Anderson, A. J. and Austermann, J. E. and Avva, J. S. and Thakur, R. Basu and Bender, A. N. and Benson, B. A. and Carlstrom, J. E. and Carter, F. W. and Cecil, T. and Chang, C. L. and Cliche, J. F. and Cukierman, A. and Denison, E. V. and de Haan, T. and Divan, R. and Dobbs, M. A. and Dutcher, D. and Everett, W. and Foster, A. and Gannon, R. N. and Gilbert, A. and Groh, J. C. and Halverson, N. W. and Harke-Hosemann, A. H. and Harrington, N. L. and Henning, J. W. and Hilton, G. C. and Holzapfel, W. L. and Huang, N. and Irwin, K. D. and Jeong, O. B. and Jonas, M. and Khaire, T. and Kofman, A. M. and Korman, M. and Kubik, D. and Kuhlmann, S. and Kuo, C. L. and Lee, A. T. and Lowitz, A. E. and Meyer, S. S. and Michalik, D. and Miller, C. S. and Montgomery, J. and Nadolski, A. and Natoli, T. and Nguyen, H. and Noble, G. I. and Novosad, V. and Padin, S. and Pan, Z. and Pearson, J. and Posada, C. M. and Rahlin, A. and Ruhl, J. E. and Saunders, L. J. and Sayre, J. T. and Shirley, I. and Shirokoff, E. and Smecher, G. and Sobrin, J. A. and Stan, L. and Stark, A. A. and Story, K. T. and Suzuki, A. and Tang, Q. Y. and Thompson, K. L. and Tucker, C. and Vale, L. R. and Vanderlinde, K. and Vieira, J. D. and Wang, G. and Whitehorn, N. and Yefremenko, V. and Yoon, K. W. and Young, M. R.},
abstractNote = {In this work, we have measured the properties of membrane-suspended bolometer thermal links and microstrip transmission lines in the transition-edge sensor arrays for the third-generation camera for South Pole Telescope (SPT-3G). A promising technique for controlling the end point of the release etch that defines the thermal link has been developed. We have also evaluated the microstrip loss in our detectors by measuring the optical efficiency of detectors with different lengths of microstrip line. The loss tangent is sufficiently low for the use in multi-chronic pixels for cosmic microwave background instruments like SPT-3G.},
doi = {10.1007/s10909-018-1907-2},
url = {https://www.osti.gov/biblio/1490492}, journal = {Journal of Low Temperature Physics},
issn = {0022-2291},
number = 5-6,
volume = 193,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: a SEM image of a detector pixel. b Detailed image shows the SiN cantilever area around the detector island. c Psat distribution of bolometers from three representative SPT-3G wafers (Color figure online)

Save / Share:

Works referenced in this record:

Precision control of thermal transport in cryogenic single-crystal silicon devices
journal, March 2014


Design and Assembly of SPT-3G Cold Readout Hardware
journal, May 2018


Thermal Properties of Silicon Nitride Beams Below One Kelvin
journal, June 2011


Mass Reconstruction with Cosmic Microwave Background Polarization
journal, August 2002


Isotropic Silicon Etching With $\hbox{XeF}_{2}$ Gas for Wafer-Level Micromachining Applications
journal, December 2012


Multi-chroic Dual-Polarization Bolometric Focal Plane for Studies of the Cosmic Microwave Background
journal, March 2012


Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti–Au–Ti–Au Thin-Film Stack
journal, April 2018


Fabrication of Detector Arrays for the SPT-3G Receiver
journal, May 2018


Improvements in Silicon Oxide Dielectric Loss for Superconducting Microwave Detector Circuits
journal, June 2013


Millimeter-Wave Lumped Element Superconducting Bandpass Filters for Multi-Color Imaging
journal, June 2009


Detection of B -Mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope
journal, September 2013


Silicon nitride micromesh bolometer array for submillimeter astrophysics
journal, January 2001


Dual-Polarized Sinuous Antennas on Extended Hemispherical Silicon Lenses
journal, September 2012


Bolometer noise: nonequilibrium theory
journal, January 1982


A superconducting bolometer with strong electrothermal feedback
journal, September 1996


Optical Characterization of the SPT-3G Camera
journal, May 2018


Fabrication of large dual-polarized multichroic TES bolometer arrays for CMB measurements with the SPT-3G camera
journal, August 2015


Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope
journal, June 2017


Neutrino physics from the cosmic microwave background and large scale structure
journal, March 2015


A dual-polarized broadband planar antenna and channelizing filter bank for millimeter wavelengths
journal, February 2013


Works referencing / citing this record:

Fabrication of Detector Arrays for the SPT-3G Receiver
journal, May 2018


Optical Characterization of the SPT-3G Camera
journal, May 2018


SPT-3G: A Multichroic Receiver for the South Pole Telescope
journal, July 2018


Year two instrument status of the SPT-3G cosmic microwave background receiver
conference, August 2018

  • Carter, Faustin W.; Cecil, Thomas W.; Chang, Clarence L.
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
  • https://doi.org/10.1117/12.2312426

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.