skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons

Abstract

In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip. The charge injections lower the cyclodehydrogenation barrier in the catalyst-free formation of graphitic lattices, and the orbital symmetry conservation rules favour hole rather than electron injections for the GNR formation. The created polymer–GNR intraribbon heterostructures have a type-I energy level alignment and strongly localized interfacial states. Lastly, this finding points to a new route towards controllable synthesis of freestanding graphitic layers, facilitating the design of on-surface reactions for GNR-based structures.

Authors:
ORCiD logo [1];  [2];  [1];  [1]; ORCiD logo [3];  [4];  [3];  [1];  [4]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  2. North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS) and Computer Science and Mathematics Div.
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1489365
Grant/Contract Number:  
FG02-98ER45685
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Ma, Chuanxu, Xiao, Zhongcan, Zhang, Honghai, Liang, Liangbo, Huang, Jingsong, Lu, Wenchang, Sumpter, Bobby G., Hong, Kunlun, Bernholc, J., and Li, An -Ping. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons. United States: N. p., 2017. Web. doi:10.1038/ncomms14815.
Ma, Chuanxu, Xiao, Zhongcan, Zhang, Honghai, Liang, Liangbo, Huang, Jingsong, Lu, Wenchang, Sumpter, Bobby G., Hong, Kunlun, Bernholc, J., & Li, An -Ping. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons. United States. doi:10.1038/ncomms14815.
Ma, Chuanxu, Xiao, Zhongcan, Zhang, Honghai, Liang, Liangbo, Huang, Jingsong, Lu, Wenchang, Sumpter, Bobby G., Hong, Kunlun, Bernholc, J., and Li, An -Ping. Mon . "Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons". United States. doi:10.1038/ncomms14815. https://www.osti.gov/servlets/purl/1489365.
@article{osti_1489365,
title = {Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons},
author = {Ma, Chuanxu and Xiao, Zhongcan and Zhang, Honghai and Liang, Liangbo and Huang, Jingsong and Lu, Wenchang and Sumpter, Bobby G. and Hong, Kunlun and Bernholc, J. and Li, An -Ping},
abstractNote = {In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip. The charge injections lower the cyclodehydrogenation barrier in the catalyst-free formation of graphitic lattices, and the orbital symmetry conservation rules favour hole rather than electron injections for the GNR formation. The created polymer–GNR intraribbon heterostructures have a type-I energy level alignment and strongly localized interfacial states. Lastly, this finding points to a new route towards controllable synthesis of freestanding graphitic layers, facilitating the design of on-surface reactions for GNR-based structures.},
doi = {10.1038/ncomms14815},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 8,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: | Bottom-up synthesis of polymer chains on armchair graphene nanoribbons with a width of seven carbon (7-aGNRs). (a) Sketch for synthesis of the second-layer (2nd-layer) polyanthrylene chains on 7-aGNRs from 10,10' -dibromo-9,9'-bianthryl (DBBA) molecules with stepwise annealing at 470 and 670 K, respectively. (b) Large-area scanning tunnelling microscopymore » (STM) image showing the polymer chains on 7-aGNRs (sample voltage Vs= 2 V, tunnelling current It=60 pA). Scale bar, 20 nm. (c) High-resolution STM image of the first-layer (1st-layer) 7-aGNR (Vs= 0.6 V, It= 100 pA) superposed with an atomic structure. Scale bar, 1 nm. (d) Small-scale STM image of the 2nd-layer polymer chains (Vs= + 1 V, It= 60 pA). Scale bar, 2 nm. (e) The simulated STM image and an atomic structure of the polymer superposed on the magnified image of the top polymer chain in d. Scale bar, 1 nm. (f) Highresolution STM image showing the detailed structure of the polymer (Vs= 2 V, It= 10 pA). Scale bar, 2 nm. (g) Charge density distribution of the highest occupied crystal orbital of the polymer (HOCOp). Dashed boxes mark the polymer unit in the polymer.« less

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Voltage-dependent conductance of a single graphene nanoribbon
journal, October 2012

  • Koch, Matthias; Ample, Francisco; Joachim, Christian
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.169

Structurally uniform and atomically precise carbon nanostructures
journal, January 2016


On-surface synthesis of graphene nanoribbons with zigzag edge topology
journal, March 2016

  • Ruffieux, Pascal; Wang, Shiyong; Yang, Bo
  • Nature, Vol. 531, Issue 7595
  • DOI: 10.1038/nature17151

Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons
journal, December 2013

  • Narita, Akimitsu; Feng, Xinliang; Hernandez, Yenny
  • Nature Chemistry, Vol. 6, Issue 2
  • DOI: 10.1038/nchem.1819

On-Surface Synthesis of Atomically Precise Graphene Nanoribbons
journal, February 2016

  • Talirz, Leopold; Ruffieux, Pascal; Fasel, Roman
  • Advanced Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adma.201505738

STM-Induced Hydrogen Desorption via a Hole Resonance
journal, March 1998


Exceptional ballistic transport in epitaxial graphene nanoribbons
journal, February 2014

  • Baringhaus, Jens; Ruan, Ming; Edler, Frederik
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature12952

Synthesis of wide atomically precise graphene nanoribbons from para-oligophenylene based molecular precursor
journal, October 2014


Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
journal, June 2013

  • Chen, Yen-Chia; de Oteyza, Dimas G.; Pedramrazi, Zahra
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401948e

The Conservation of Orbital Symmetry
journal, November 1969

  • Woodward, R. B.; Hoffmann, Roald
  • Angewandte Chemie International Edition in English, Vol. 8, Issue 11
  • DOI: 10.1002/anie.196907811

Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes
journal, November 2010

  • Treier, Matthias; Pignedoli, Carlo Antonio; Laino, Teodoro
  • Nature Chemistry, Vol. 3, Issue 1
  • DOI: 10.1038/nchem.891

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Polymerization of Polyanthrylene on a Titanium Dioxide (011)-(2×1) Surface
journal, August 2013

  • Kolmer, Marek; Ahmad Zebari, Amir A.; Prauzner-Bechcicki, Jakub S.
  • Angewandte Chemie, Vol. 125, Issue 39
  • DOI: 10.1002/ange.201303657

Comparison of Oxidative Aromatic Coupling and the Scholl Reaction
journal, July 2013

  • Grzybowski, Marek; Skonieczny, Kamil; Butenschön, Holger
  • Angewandte Chemie International Edition, Vol. 52, Issue 38
  • DOI: 10.1002/anie.201210238

Zipping Up: Cooperativity Drives the Synthesis of Graphene Nanoribbons
journal, September 2011

  • Björk, Jonas; Stafström, Sven; Hanke, Felix
  • Journal of the American Chemical Society, Vol. 133, Issue 38
  • DOI: 10.1021/ja205857a

Graphene transistors
journal, May 2010


A Slippery Slope:  Mechanistic Analysis of the Intramolecular Scholl Reaction of Hexaphenylbenzene
journal, November 2004

  • Rempala, Pawel; Kroulík, Jiří; King, Benjamin T.
  • Journal of the American Chemical Society, Vol. 126, Issue 46
  • DOI: 10.1021/ja046513d

Large-scale solution synthesis of narrow graphene nanoribbons
journal, February 2014

  • Vo, Timothy H.; Shekhirev, Mikhail; Kunkel, Donna A.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4189

Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Graphene nanoribbon heterojunctions
journal, September 2014

  • Cai, Jinming; Pignedoli, Carlo A.; Talirz, Leopold
  • Nature Nanotechnology, Vol. 9, Issue 11
  • DOI: 10.1038/nnano.2014.184

Exciton-dominated optical response of ultra-narrow graphene nanoribbons
journal, July 2014

  • Denk, Richard; Hohage, Michael; Zeppenfeld, Peter
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5253

Quasiparticle Energies and Band Gaps in Graphene Nanoribbons
journal, November 2007


Giant edge state splitting at atomically precise graphene zigzag edges
journal, May 2016

  • Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11507

Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons
journal, February 2012

  • Blankenburg, Stephan; Cai, Jinming; Ruffieux, Pascal
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn203129a

Stereochemistry of Electrocyclic Reactions
journal, January 1965

  • Woodward, R. B.; Hoffmann, Roald
  • Journal of the American Chemical Society, Vol. 87, Issue 2
  • DOI: 10.1021/ja01080a054

Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond
journal, September 2007


Probing the Arenium-Ion (ProtonTransfer) versus the Cation-Radical (Electron Transfer) Mechanism of Scholl Reaction Using DDQ as Oxidant
journal, July 2010

  • Zhai, Linyi; Shukla, Ruchi; Wadumethrige, Shriya H.
  • The Journal of Organic Chemistry, Vol. 75, Issue 14
  • DOI: 10.1021/jo100611k

Theory of the scanning tunneling microscope
journal, January 1985


Electronic and Magnetic Properties of Zigzag Graphene Nanoribbons on the (111) Surface of Cu, Ag, and Au
journal, May 2013


Self-Assembly Strategy for Fabricating Connected Graphene Nanoribbons
journal, October 2015


Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects
journal, November 2012


Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions
journal, January 2015


Absence of Edge States in Covalently Bonded Zigzag Edges of Graphene on Ir(111)
journal, February 2013

  • Li, Yan; Subramaniam, Dinesh; Atodiresei, Nicolae
  • Advanced Materials, Vol. 25, Issue 14
  • DOI: 10.1002/adma.201204539

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
journal, April 1990


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Electronic Structure of Atomically Precise Graphene Nanoribbons
journal, July 2012

  • Ruffieux, Pascal; Cai, Jinming; Plumb, Nicholas C.
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn3021376

Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788)
journal, May 2012


Rationale for mixing exact exchange with density functional approximations
journal, December 1996

  • Perdew, John P.; Ernzerhof, Matthias; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 105, Issue 22, p. 9982-9985
  • DOI: 10.1063/1.472933

Half-metallic graphene nanoribbons
journal, November 2006

  • Son, Young-Woo; Cohen, Marvin L.; Louie, Steven G.
  • Nature, Vol. 444, Issue 7117
  • DOI: 10.1038/nature05180

From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy
journal, August 2015

  • Simonov, Konstantin A.; Vinogradov, Nikolay A.; Vinogradov, Alexander S.
  • ACS Nano, Vol. 9, Issue 9
  • DOI: 10.1021/acsnano.5b03280

Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene
journal, April 2013

  • Garnica, Manuela; Stradi, Daniele; Barja, Sara
  • Nature Physics, Vol. 9, Issue 6
  • DOI: 10.1038/nphys2610

Toward Cove-Edged Low Band Gap Graphene Nanoribbons
journal, May 2015

  • Liu, Junzhi; Li, Bo-Wei; Tan, Yuan-Zhi
  • Journal of the American Chemical Society, Vol. 137, Issue 18
  • DOI: 10.1021/jacs.5b03017

Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom
journal, June 2013

  • van der Lit, Joost; Boneschanscher, Mark P.; Vanmaekelbergh, Daniël
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3023

Surface-Assisted Reactions toward Formation of Graphene Nanoribbons on Au(110) Surface
journal, January 2015

  • Massimi, Lorenzo; Ourdjini, Oualid; Lafferentz, Leif
  • The Journal of Physical Chemistry C, Vol. 119, Issue 5
  • DOI: 10.1021/jp509415r

Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons
journal, December 2012

  • Huang, Han; Wei, Dacheng; Sun, Jiatao
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00983

Homochiral polymerization-driven selective growth of graphene nanoribbons
journal, September 2016

  • Sakaguchi, Hiroshi; Song, Shaotang; Kojima, Takahiro
  • Nature Chemistry, Vol. 9, Issue 1
  • DOI: 10.1038/nchem.2614

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.