skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution

Abstract

Understanding how materials that catalyse the oxygen evolution reaction (OER) function is essential for the development of efficient energy-storage technologies. The traditional understanding of the OER mechanism on metal oxides involves four concerted proton–electron transfer steps on metal-ion centres at their surface and product oxygen molecules derived from water. Here, using in situ 18O isotope labelling mass spectrometry, we provide direct experimental evidence that the O2 generated during the OER on some highly active oxides can come from lattice oxygen. The oxides capable of lattice-oxygen oxidation also exhibit pH-dependent OER activity on the reversible hydrogen electrode scale, indicating non-concerted proton–electron transfers in the OER mechanism. Based on our experimental data and density functional theory calculations, we discuss mechanisms that are fundamentally different from the conventional scheme and show that increasing the covalency of metal–oxygen bonds is critical to trigger lattice-oxygen oxidation and enable non-concerted proton–electron transfers during OER.

Authors:
 [1]; ORCiD logo [2];  [3];  [3]; ORCiD logo [4];  [5];  [3];  [2];  [6]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
  2. Leiden Univ. (Netherlands). Leiden Inst. of Chemistry
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering and Research Lab. of Electronics
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Research Lab. of Electronics; Univ. of Milan (Italy). Dept. Materials Science
  6. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering, Dept. of Materials Science and Engineering and Research Lab. of Electronics
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center
Sponsoring Org.:
USDOE Office of Fossil Energy (FE); USDOE Office of Science (SC)
OSTI Identifier:
1489150
DOE Contract Number:  
FE0009435; AC02-05CH11231
Resource Type:
Journal Article
Journal Name:
Nature Chemistry
Additional Journal Information:
Journal Volume: 9; Journal Issue: 5; Journal ID: ISSN 1755-4330
Country of Publication:
United States
Language:
English

Citation Formats

Grimaud, Alexis, Diaz-Morales, Oscar, Han, Binghong, Hong, Wesley T., Lee, Yueh-Lin, Giordano, Livia, Stoerzinger, Kelsey A., Koper, Marc T. M., and Shao-Horn, Yang. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. United States: N. p., 2017. Web. doi:10.1038/NCHEM.2695.
Grimaud, Alexis, Diaz-Morales, Oscar, Han, Binghong, Hong, Wesley T., Lee, Yueh-Lin, Giordano, Livia, Stoerzinger, Kelsey A., Koper, Marc T. M., & Shao-Horn, Yang. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. United States. doi:10.1038/NCHEM.2695.
Grimaud, Alexis, Diaz-Morales, Oscar, Han, Binghong, Hong, Wesley T., Lee, Yueh-Lin, Giordano, Livia, Stoerzinger, Kelsey A., Koper, Marc T. M., and Shao-Horn, Yang. Mon . "Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution". United States. doi:10.1038/NCHEM.2695.
@article{osti_1489150,
title = {Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution},
author = {Grimaud, Alexis and Diaz-Morales, Oscar and Han, Binghong and Hong, Wesley T. and Lee, Yueh-Lin and Giordano, Livia and Stoerzinger, Kelsey A. and Koper, Marc T. M. and Shao-Horn, Yang},
abstractNote = {Understanding how materials that catalyse the oxygen evolution reaction (OER) function is essential for the development of efficient energy-storage technologies. The traditional understanding of the OER mechanism on metal oxides involves four concerted proton–electron transfer steps on metal-ion centres at their surface and product oxygen molecules derived from water. Here, using in situ 18O isotope labelling mass spectrometry, we provide direct experimental evidence that the O2 generated during the OER on some highly active oxides can come from lattice oxygen. The oxides capable of lattice-oxygen oxidation also exhibit pH-dependent OER activity on the reversible hydrogen electrode scale, indicating non-concerted proton–electron transfers in the OER mechanism. Based on our experimental data and density functional theory calculations, we discuss mechanisms that are fundamentally different from the conventional scheme and show that increasing the covalency of metal–oxygen bonds is critical to trigger lattice-oxygen oxidation and enable non-concerted proton–electron transfers during OER.},
doi = {10.1038/NCHEM.2695},
journal = {Nature Chemistry},
issn = {1755-4330},
number = 5,
volume = 9,
place = {United States},
year = {2017},
month = {1}
}

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

A quick look at how photoelectrodes work
journal, November 2015


Kinetics of the electrochemical evolution of isotopically enriched gases. Part 2.—18O16O evolution on NiCo2O4 and LixCo3–xO4 in alkaline solution
journal, January 1984

  • Hibbert, D. Brynn; Churchill, Christine R.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 80, Issue 7
  • DOI: 10.1039/f19848001965

What Can Density Functional Theory Tell Us about Artificial Catalytic Water Splitting?
journal, April 2014

  • Mavros, Michael G.; Tsuchimochi, Takashi; Kowalczyk, Tim
  • Inorganic Chemistry, Vol. 53, Issue 13
  • DOI: 10.1021/ic5002557

Ca 2 Mn 2 O 5 as Oxygen-Deficient Perovskite Electrocatalyst for Oxygen Evolution Reaction
journal, October 2014

  • Kim, Jaemin; Yin, Xi; Tsao, Kai-Chieh
  • Journal of the American Chemical Society, Vol. 136, Issue 42
  • DOI: 10.1021/ja506254g

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Projector augmented-wave method
journal, December 1994


Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K -edge X-ray Absorption Spectroscopy
journal, January 2014

  • Suntivich, Jin; Hong, Wesley T.; Lee, Yueh-Lin
  • The Journal of Physical Chemistry C, Vol. 118, Issue 4
  • DOI: 10.1021/jp410644j

Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts
journal, July 2015

  • Binninger, Tobias; Mohamed, Rhiyaad; Waltar, Kay
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12167

The Electrocatalysis of Oxygen Evolution on Perovskites
journal, January 1984

  • Bockris, John O'M.
  • Journal of The Electrochemical Society, Vol. 131, Issue 2
  • DOI: 10.1149/1.2115565

Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution
journal, September 2013

  • Grimaud, Alexis; May, Kevin J.; Carlton, Christopher E.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3439

Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2−δ electrodes – DEMS approach to reaction mechanism determination
journal, October 2009


Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis
journal, January 2016

  • He, Minglong; Fic, Krzysztof; Fra̧ckowiak, Elżbieta
  • Energy Environ. Sci., Vol. 9, Issue 2
  • DOI: 10.1039/C5EE02875B

Anionic redox processes for electrochemical devices
journal, January 2016

  • Grimaud, A.; Hong, W. T.; Shao-Horn, Y.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4551

Oxygen Evolution on La[sub 1−x]Sr[sub x]CoO[sub 3] Electrodes in Alkaline Solutions
journal, January 1980

  • Matsumoto, Y.
  • Journal of The Electrochemical Society, Vol. 127, Issue 4
  • DOI: 10.1149/1.2129762

Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides?
journal, January 2015

  • Calle-Vallejo, Federico; Díaz-Morales, Oscar A.; Kolb, Manuel J.
  • ACS Catalysis, Vol. 5, Issue 2
  • DOI: 10.1021/cs5016657

CoO2, The End Member of the LixCoO2 Solid Solution
journal, January 1996

  • Amatucci, G. G.; Tarascon, J. M.; Klein, L. C.
  • Journal of The Electrochemical Society, Vol. 143, Issue 3, p. 1114-1123
  • DOI: 10.1149/1.1836594

2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs
journal, January 2014

  • Seger, Brian; Castelli, Ivano E.; Vesborg, Peter C. K.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01335B

pH dependence of OER activity of oxides: Current and future perspectives
journal, March 2016


Electrochemical oxygen intercalation into oxide networks
journal, January 1992


Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts
journal, October 2012

  • May, Kevin J.; Carlton, Christopher E.; Stoerzinger, Kelsey A.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 22
  • DOI: 10.1021/jz301414z

Volcano Activity Relationships for Proton-Coupled Electron Transfer Reactions in Electrocatalysis
journal, September 2015


Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
journal, December 2015


A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Powering the planet with solar fuel
journal, April 2009


Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode
journal, January 2010

  • Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki
  • Journal of The Electrochemical Society, Vol. 157, Issue 8
  • DOI: 10.1149/1.3456630

Electrolysis of water on (oxidized) metal surfaces
journal, December 2005


Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry
journal, August 2007


New cubic perovskites for one- and two-photon water splitting using the computational materials repository
journal, January 2012

  • Castelli, Ivano E.; Landis, David D.; Thygesen, Kristian S.
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22341d

Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO 3 (B = Cr, Mn, Fe, Co and Ni)
journal, January 2015

  • Lee, Yueh-Lin; Gadre, Milind J.; Shao-Horn, Yang
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 33
  • DOI: 10.1039/C5CP02834E

Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis
journal, January 2013


Electrolysis of water on oxide surfaces
journal, September 2007


Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH
journal, November 2010

  • Surendranath, Yogesh; Kanan, Matthew W.; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 132, Issue 46
  • DOI: 10.1021/ja106102b

Model of Carbon Corrosion in PEM Fuel Cells
journal, January 2006

  • Meyers, Jeremy P.; Darling, Robert M.
  • Journal of The Electrochemical Society, Vol. 153, Issue 8
  • DOI: 10.1149/1.2203811

Evidence for holes on oxygen sites in the high- T c superconductors La 2 x Sr x CuO 4 and YBa 2 Cu 3 O 7 y
journal, April 1988


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity
journal, November 2015

  • Trześniewski, Bartek J.; Diaz-Morales, Oscar; Vermaas, David A.
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b06814

On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration
journal, August 2006

  • Wonders, A. H.; Housmans, T. H. M.; Rosca, V.
  • Journal of Applied Electrochemistry, Vol. 36, Issue 11
  • DOI: 10.1007/s10800-006-9173-4

Electrochemical topotactic oxidation of nonstoichiometric perovskites at ambient temperature
journal, April 2002


Accurate and simple analytic representation of the electron-gas correlation energy
journal, June 1992


Topotactic Electrochemical Redox Reactions of the Defect Perovskite SrCoO2.5+x
September 1996

  • Nemudry, A.; Rudolf, P.; Schollhorn, R.
  • Chemistry of Materials, Vol. 8, Issue 9, p. 2232-2238
  • DOI: 10.1021/cm950504+

Anion–Cation Redox Competition and the Formation of New Compounds in Highly Covalent Systems
journal, September 1996


Prediction of solid oxide fuel cell cathode activity with first-principles descriptors
journal, January 2011

  • Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee02032c

Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS
journal, April 2013

  • Risch, Marcel; Grimaud, Alexis; May, Kevin J.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp3126768

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles
journal, January 2015

  • Koroidov, Sergey; Anderlund, Magnus F.; Styring, Stenbjörn
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE00700C

Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry
journal, November 1987

  • Wohlfahrt-Mehrens, M.; Heitbaum, J.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 237, Issue 2
  • DOI: 10.1016/0022-0728(87)85237-3

Ab initio energetics of La B O 3 ( 001 ) ( B = Mn , Fe, Co, and Ni) for solid oxide fuel cell cathodes
journal, December 2009


La 0.8 Sr 0.2 MnO 3−δ Decorated with Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ : A Bifunctional Surface for Oxygen Electrocatalysis with Enhanced Stability and Activity
journal, February 2014

  • Risch, Marcel; Stoerzinger, Kelsey A.; Maruyama, Shingo
  • Journal of the American Chemical Society, Vol. 136, Issue 14
  • DOI: 10.1021/ja5009954

Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis
journal, January 2016

  • Jung, Jae-Il; Risch, Marcel; Park, Seungkyu
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE03124A

Surface protonation and electrochemical activity of oxides in aqueous solution
journal, March 1990

  • Goodenough, John B.; Manoharan, R.; Paranthaman, M.
  • Journal of the American Chemical Society, Vol. 112, Issue 6
  • DOI: 10.1021/ja00162a006

Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes
journal, June 2014

  • Mefford, J. Tyler; Hardin, William G.; Dai, Sheng
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat4000

Electronic Design Criteria for O−O Bond Formation via Metal−Oxo Complexes
journal, March 2008

  • Betley, Theodore A.; Wu, Qin; Van Voorhis, Troy
  • Inorganic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1021/ic701972n

A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution
journal, January 2016


Direct-Coupling O 2 Bond Forming a Pathway in Cobalt Oxide Water Oxidation Catalysts
journal, August 2011

  • Wang, Lee-Ping; Van Voorhis, Troy
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 17
  • DOI: 10.1021/jz201021n

Perspective on Engineering Transition-Metal Oxides
journal, September 2013

  • Goodenough, John B.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm402063u