skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Facile incorporation of technetium into magnetite, magnesioferrite, and hematite by formation of ferrous nitrate in situ : precursors to iron oxide nuclear waste forms

Abstract

Technetium ( 99Tc) is a problematic fission product for the long-term disposal of nuclear waste due to its long half-life, high fission yield, and to the environmental mobility of pertechnetate, the stable Tc species in aerobic environments. One approach to preventing 99Tc contamination is using durable waste forms based on environmentally stable natural analogs such as hematite (-Fe 2O 3) or magnesioferrite (MgFe 2O 4). The incorporation of Tc into hematite, magnesioferrite, and magnetite (Fe 3O 4) by means of simple, aqueous chemistry is presented starting from TcO 4 - in 5 M nitric acid. A combination of X-ray diffraction and X-ray absorption fine structure spectroscopy reveals that Tc(IV) replaces Fe(III) within the iron oxide structures. Following incorporation, Tc doped samples were suspended in deionized water under aerobic conditions, and the release rate of Tc under these conditions was determined. The results of this work show that Tc leaches more quickly from Fe 3O 4 than from -Fe 2O 3 or MgFe 2O 4.

Authors:
ORCiD logo [1]; ORCiD logo [2]
  1. Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley; USA
  2. Geosciences Division; Pacific Northwest National Laboratory; Richland; USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Environmental Management (EM)
OSTI Identifier:
1485476
Report Number(s):
PNNL-SA-132453
Journal ID: ISSN 1477-9226; ICHBD9
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Dalton Transactions
Additional Journal Information:
Journal Volume: 47; Journal Issue: 30; Journal ID: ISSN 1477-9226
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English

Citation Formats

Lukens, Wayne W., and Saslow, Sarah A. Facile incorporation of technetium into magnetite, magnesioferrite, and hematite by formation of ferrous nitrate in situ : precursors to iron oxide nuclear waste forms. United States: N. p., 2018. Web. doi:10.1039/C8DT01356J.
Lukens, Wayne W., & Saslow, Sarah A. Facile incorporation of technetium into magnetite, magnesioferrite, and hematite by formation of ferrous nitrate in situ : precursors to iron oxide nuclear waste forms. United States. doi:10.1039/C8DT01356J.
Lukens, Wayne W., and Saslow, Sarah A. Mon . "Facile incorporation of technetium into magnetite, magnesioferrite, and hematite by formation of ferrous nitrate in situ : precursors to iron oxide nuclear waste forms". United States. doi:10.1039/C8DT01356J.
@article{osti_1485476,
title = {Facile incorporation of technetium into magnetite, magnesioferrite, and hematite by formation of ferrous nitrate in situ : precursors to iron oxide nuclear waste forms},
author = {Lukens, Wayne W. and Saslow, Sarah A.},
abstractNote = {Technetium (99Tc) is a problematic fission product for the long-term disposal of nuclear waste due to its long half-life, high fission yield, and to the environmental mobility of pertechnetate, the stable Tc species in aerobic environments. One approach to preventing 99Tc contamination is using durable waste forms based on environmentally stable natural analogs such as hematite (-Fe2O3) or magnesioferrite (MgFe2O4). The incorporation of Tc into hematite, magnesioferrite, and magnetite (Fe3O4) by means of simple, aqueous chemistry is presented starting from TcO4- in 5 M nitric acid. A combination of X-ray diffraction and X-ray absorption fine structure spectroscopy reveals that Tc(IV) replaces Fe(III) within the iron oxide structures. Following incorporation, Tc doped samples were suspended in deionized water under aerobic conditions, and the release rate of Tc under these conditions was determined. The results of this work show that Tc leaches more quickly from Fe3O4 than from -Fe2O3 or MgFe2O4.},
doi = {10.1039/C8DT01356J},
journal = {Dalton Transactions},
issn = {1477-9226},
number = 30,
volume = 47,
place = {United States},
year = {2018},
month = {1}
}

Works referenced in this record:

Thermodynamic Model for the Solubility of TcO 2 · xH 2 O(am) in the Aqueous Tc(IV) – Na + – Cl - – H + – OH - – H 2 O System
journal, February 2004


Synthesis of nickel–chromium–zinc ferrite powders from stainless steel pickling liquors
journal, August 1999

  • López-Delgado, Aurora; López, Felix A.; de Vidales, José L. Martín
  • Journal of Materials Research, Vol. 14, Issue 8
  • DOI: 10.1557/JMR.1999.0463

Incorporation and Retention of 99-Tc(IV) in Magnetite under High pH Conditions
journal, October 2014

  • Marshall, Timothy A.; Morris, Katherine; Law, Gareth T. W.
  • Environmental Science & Technology, Vol. 48, Issue 20
  • DOI: 10.1021/es503438e

99 Tc- and 239 Pu-Doped Glass Leaching Experiments: Residual Alteration Rate and Radionuclide Behavior
journal, October 2013

  • Rolland, Séverine; Tribet, Magaly; Jégou, Christophe
  • International Journal of Applied Glass Science, Vol. 4, Issue 4
  • DOI: 10.1111/ijag.12051

Altérabilité des minéraux titanés (ilménite et rutile) et mobilité du titane dans les profils d'altération du secteur d'Ovala (Gabon)
journal, August 1995


High-level radioactive solid waste form evaluation: Model for predicting leaching behavior
journal, January 1982


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Treatment of radioactive wastes: An X-ray absorption spectroscopy study of the reaction of technetium with green rust
journal, December 2003

  • Pepper, Sarah E.; Bunker, Debbie J.; Bryan, Nicholas D.
  • Journal of Colloid and Interface Science, Vol. 268, Issue 2
  • DOI: 10.1016/j.jcis.2003.08.024

Volatile species of technetium and rhenium during waste vitrification
journal, February 2018


ATHENA and ARTEMIS Interactive Graphical Data Analysisusing IFEFFIT
journal, January 2005


Ab initio curved-wave x-ray-absorption fine structure
journal, September 1991


The Release of Technetium from Defense Waste Processing Facility Glasses
journal, January 1995


The Formation of Mg-bearing Ferrite by the Air Oxidation of Aqueous Suspensions
journal, March 1979

  • Kaneko, Ken; Katsura, Takashi
  • Bulletin of the Chemical Society of Japan, Vol. 52, Issue 3
  • DOI: 10.1246/bcsj.52.747

Redox behavior of Tc(VII)/Tc(IV) under various reducing conditions in 0.1 M NaCl solutions
journal, May 2013

  • Kobayashi, Taishi; Scheinost, Andreas C.; Fellhauer, D.
  • Radiochimica Acta, Vol. 101, Issue 5
  • DOI: 10.1524/ract.2013.2040

Water diffusion in the simulated French nuclear waste glass SON 68 contacting silica rich solutions: Experimental and modeling
journal, September 2006


Dissolution of Technetium(IV) Oxide by Natural and Synthetic Organic Ligands under both Reducing and Oxidizing Conditions
journal, June 2011

  • Gu, Baohua; Dong, Wenming; Liang, Liyuan
  • Environmental Science & Technology, Vol. 45, Issue 11
  • DOI: 10.1021/es200110y

Structural and Magnetic Properties of Sn-, Ti-, and Mg-Substituted α-Fe2O3: A Study by Neutron Diffraction and Mössbauer Spectroscopy
journal, May 2000

  • Berry, Frank J.; Greaves, Colin; Helgason, Örn
  • Journal of Solid State Chemistry, Vol. 151, Issue 2
  • DOI: 10.1006/jssc.1999.8605

The Formation of Manganese and Cobalt Ferrites by the Air Oxidation of Aqueous Suspensions and Their Properties
journal, January 1978

  • Kiyama, Masao
  • Bulletin of the Chemical Society of Japan, Vol. 51, Issue 1
  • DOI: 10.1246/bcsj.51.134

Crystal chemistry of some technetium-containing oxides
journal, December 1964


Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation
journal, June 2011

  • Um, Wooyong; Chang, Hyun-Shik; Icenhower, Jonathan P.
  • Environmental Science & Technology, Vol. 45, Issue 11
  • DOI: 10.1021/es104343p

Preparation, characterization, crystal and molecular structure of Na 2 [N(CH 2 COO) 3 99 Tc(IV) (μ-O) 2 99 Tc(IV)N(CH 2 COO) 3 ] · 6H 2 O
journal, July 1983

  • Anderegg, Giorgio; Müller, Edgar; Zollinger, Kurt
  • Helvetica Chimica Acta, Vol. 66, Issue 5
  • DOI: 10.1002/hlca.19830660528

The biogeochemistry of technetium: A review of the behavior of an artificial element in the natural environment
journal, October 2010

  • Icenhower, J. P.; Qafoku, N. P.; Zachara, J. M.
  • American Journal of Science, Vol. 310, Issue 8
  • DOI: 10.2475/08.2010.02

Impeding 99Tc(IV) mobility in novel waste forms
journal, June 2016

  • Lee, Mal-Soon; Um, Wooyong; Wang, Guohui
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12067

Dissolution of Iron Oxides and Oxyhydroxides in Hydrochloric and Perchloric Acids
journal, January 1981


Studies on the Immobilization of Technetium under Near Field Geochemical Conditions
journal, January 1996


The HighScore suite
journal, October 2014


Technetium Incorporation into Goethite (α-FeOOH): An Atomic-Scale Investigation
journal, October 2015

  • Smith, Frances N.; Taylor, Christopher D.; Um, Wooyong
  • Environmental Science & Technology, Vol. 49, Issue 22
  • DOI: 10.1021/acs.est.5b03354

Mechanism of Oxidation of Magnetite to γ-Fe2O3
journal, March 1968

  • Gallagher, K. J.; Feitknecht, W.; Mannweiler, U.
  • Nature, Vol. 217, Issue 5134
  • DOI: 10.1038/2171118a0

Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance
journal, April 2016

  • Neeway, James Joseph; Kerisit, Sebastien N.; Liu, Jia
  • The Journal of Physical Chemistry C, Vol. 120, Issue 17
  • DOI: 10.1021/acs.jpcc.6b03681

Interactions of Tc(IV) with Humic Substances
journal, April 2011

  • Boggs, Mark A.; Minton, Travis; Dong, Wenming
  • Environmental Science & Technology, Vol. 45, Issue 7
  • DOI: 10.1021/es103390z

Synthesis and properties of titanomagnetite (Fe3−xTixO4) nanoparticles: A tunable solid-state Fe(II/III) redox system
journal, December 2012


Chemistty of the Purex Process
journal, January 1984


Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle
journal, August 2011


Solid state diffusion during nuclear glass residual alteration in solution
journal, May 2007


Climatic implications of surface domains in arrays of δD and δ18O from hydroxyl minerals: goethite as an example
journal, June 2000


Jarosites: A Review
journal, December 1996

  • Das, G. K.; Acharya, S.; Anand, S.
  • Mineral Processing and Extractive Metallurgy Review, Vol. 16, Issue 3
  • DOI: 10.1080/08827509708914135

Preparation of manganese ferrite fine particles from aqueous solution
journal, October 1991

  • Tang, Z. X.; Sorensen, C. M.; Klabunde, K. J.
  • Journal of Colloid and Interface Science, Vol. 146, Issue 1
  • DOI: 10.1016/0021-9797(91)90004-R

Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels
journal, March 1980


Synthesis and X-ray structure of a new Tc(IV) oxalato complex: K4[(C2O4)2Tc(μ-O)2Tc(C2O4)2]·3H2O
journal, December 1990


Charge-Coupled Substituted Garnets (Y 3– x Ca 0.5 x M 0.5 x )Fe 5 O 12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms
journal, March 2015


Technetium Incorporation into Hematite (α-Fe 2 O 3 )
journal, August 2010

  • Skomurski, Frances N.; Rosso, Kevin M.; Krupka, Kenneth M.
  • Environmental Science & Technology, Vol. 44, Issue 15
  • DOI: 10.1021/es100069x

Iron(III) Hydrolysis and Solubility at 25 °C
journal, September 2007

  • Stefánsson, Andri
  • Environmental Science & Technology, Vol. 41, Issue 17
  • DOI: 10.1021/es070174h

Synchrotron X-ray study of the electron density in α-Fe 2 O 3
journal, August 1994

  • Maslen, E. N.; Streltsov, V. A.; Streltsova, N. R.
  • Acta Crystallographica Section B Structural Science, Vol. 50, Issue 4
  • DOI: 10.1107/S0108768194002284

Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain
journal, December 1986

  • Bohor, Bruce F.; Foord, Eugene E.; Ganapathy, Ramachandran
  • Earth and Planetary Science Letters, Vol. 81, Issue 1
  • DOI: 10.1016/0012-821X(86)90100-7

Computational Investigation of Technetium(IV) Incorporation into Inverse Spinels: Magnetite (Fe 3 O 4 ) and Trevorite (NiFe 2 O 4 )
journal, April 2016

  • Smith, Frances N.; Um, Wooyong; Taylor, Christopher D.
  • Environmental Science & Technology, Vol. 50, Issue 10
  • DOI: 10.1021/acs.est.6b00200

Synthesis and characterization of ultrafine nickel( II )-bearing ferrites (Ni x Fe 3 –x O 4 , x= 0.14–1.0)
journal, January 1995

  • Kodama, Tatsuya; Wada, Yuji; Yamamoto, Takashi
  • J. Mater. Chem., Vol. 5, Issue 9
  • DOI: 10.1039/JM9950501413

Crystal chemistry of the magnetite-ulvospinel series
journal, January 2009

  • Bosi, F.; Halenius, U.; Skogby, H.
  • American Mineralogist, Vol. 94, Issue 1
  • DOI: 10.2138/am.2009.3002

Systematic XAS study on the reduction and uptake of Tc by magnetite and mackinawite
journal, January 2016

  • Yalçıntaş, Ezgi; Scheinost, Andreas C.; Gaona, Xavier
  • Dalton Transactions, Vol. 45, Issue 44
  • DOI: 10.1039/C6DT02872A

Diffusion in Oxides
journal, January 2010

  • Van Orman, J. A.; Crispin, K. L.
  • Reviews in Mineralogy and Geochemistry, Vol. 72, Issue 1
  • DOI: 10.2138/rmg.2010.72.17

Complexation of Technetium with Humic Acid
journal, January 1993


Reduction and Simultaneous Removal of 99 Tc and Cr by Fe(OH) 2 (s) Mineral Transformation
journal, July 2017

  • Saslow, Sarah A.; Um, Wooyong; Pearce, Carolyn I.
  • Environmental Science & Technology, Vol. 51, Issue 15
  • DOI: 10.1021/acs.est.7b02278

Incorporation of Technetium into Spinel Ferrites
journal, November 2016

  • Lukens, Wayne W.; Magnani, Nicola; Tyliszczak, Tolek
  • Environmental Science & Technology, Vol. 50, Issue 23
  • DOI: 10.1021/acs.est.6b04209

Weathering geochronology by (U-Th)/He dating of goethite
journal, February 2005

  • Shuster, David L.; Vasconcelos, Paulo M.; Heim, Jonathan A.
  • Geochimica et Cosmochimica Acta, Vol. 69, Issue 3
  • DOI: 10.1016/j.gca.2004.07.028

Iron oxide waste form for stabilizing 99Tc
journal, October 2012


[環境におけるテクネチウム]<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-01-01">January 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Ishii, Toshiaki; Sakuragi, Tomofumi</span> </li> <li> RADIOISOTOPES, Vol. 55, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.3769/radioisotopes.55.485" class="text-muted" target="_blank" rel="noopener noreferrer">10.3769/radioisotopes.55.485<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/jp027048e" target="_blank" rel="noopener noreferrer" class="name">Magnetite Fe <sub>3</sub> O <sub>4</sub> Nanocrystals:  Spectroscopic Observation of Aqueous Oxidation Kinetics <sup>†</sup><span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2003-07-01">July 2003</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Tang, Jing; Myers, Matt; Bosnick, Ken A.</span> </li> <li> The Journal of Physical Chemistry B, Vol. 107, Issue 30</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/jp027048e" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/jp027048e<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0022-3115(93)90186-3" target="_blank" rel="noopener noreferrer" class="name">Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1993-05-01">May 1993</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Matzke, Hj.; Vernaz, E.</span> </li> <li> Journal of Nuclear Materials, Vol. 201</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0022-3115(93)90186-3" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0022-3115(93)90186-3<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1557/PROC-112-585" target="_blank" rel="noopener noreferrer" class="name">Leaching Tc-99 from SRP Glass in Simulated Tuff and Salt Groundwaters<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1987-01-01">January 1987</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Bibler, N. E.; Jurgensen, A. R.</span> </li> <li> MRS Proceedings, Vol. 112</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1557/PROC-112-585" class="text-muted" target="_blank" rel="noopener noreferrer">10.1557/PROC-112-585<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jnucmat.2015.08.052" target="_blank" rel="noopener noreferrer" class="name">Incorporating technetium in minerals and other solids: A review<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-11-01">November 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael</span> </li> <li> Journal of Nuclear Materials, Vol. 466</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jnucmat.2015.08.052" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jnucmat.2015.08.052<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.2113/gselements.2.6.357" target="_blank" rel="noopener noreferrer" class="name">Nuclear Waste Glasses - How Durable?<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-12-01">December 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Grambow, B.</span> </li> <li> Elements, Vol. 2, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2113/gselements.2.6.357" class="text-muted" target="_blank" rel="noopener noreferrer">10.2113/gselements.2.6.357<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1246/bcsj.54.135" target="_blank" rel="noopener noreferrer" class="name">Formation of Zn-bearing Ferrite by Air Oxidation of Aqueous Suspension<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1981-01-01">January 1981</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Kanzaki, Tadao; Nakajima, Jun-ichiro; Tamaura, Yutaka</span> </li> <li> Bulletin of the Chemical Society of Japan, Vol. 54, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1246/bcsj.54.135" class="text-muted" target="_blank" rel="noopener noreferrer">10.1246/bcsj.54.135<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0022-5088(90)90028-I" target="_blank" rel="noopener noreferrer" class="name">The solubility of technetium in the near-field environment of a radioactive waste repository<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1990-07-01">July 1990</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Pilkington, N. J.</span> </li> <li> Journal of the Less Common Metals, Vol. 161, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0022-5088(90)90028-I" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0022-5088(90)90028-I<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1557/PROC-44-823" target="_blank" rel="noopener noreferrer" class="name">Technetium Volatilization During HLLW Vitrification<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1984-01-01">January 1984</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Lammertz, H.; Merz, E.; Halaszovich, S. T.</span> </li> <li> MRS Proceedings, Vol. 44</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1557/PROC-44-823" class="text-muted" target="_blank" rel="noopener noreferrer">10.1557/PROC-44-823<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/cm0622001" target="_blank" rel="noopener noreferrer" class="name">Dissimilar Behavior of Technetium and Rhenium in Borosilicate Waste Glass as Determined by X-ray Absorption Spectroscopy<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-02-01">February 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Lukens, Wayne W.; McKeown, David A.; Buechele, Andrew C.</span> </li> <li> Chemistry of Materials, Vol. 19, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/cm0622001" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/cm0622001<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1557/PROC-176-411" target="_blank" rel="noopener noreferrer" class="name">Simultaneous Evaporation of CS and TC During Vitrification-A Thermochemical Approach<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1989-01-01">January 1989</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Migge, H.</span> </li> <li> MRS Proceedings, Vol. 176</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1557/PROC-176-411" class="text-muted" target="_blank" rel="noopener noreferrer">10.1557/PROC-176-411<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jnucmat.2015.02.007" target="_blank" rel="noopener noreferrer" class="name">Radiation effects in Zr and Hf containing garnets<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-07-01">July 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Whittle, Karl R.; Blackford, Mark G.; Smith, Katherine L.</span> </li> <li> Journal of Nuclear Materials, Vol. 462</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jnucmat.2015.02.007" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jnucmat.2015.02.007<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0012-821X(95)00051-D" target="_blank" rel="noopener noreferrer" class="name">Magnesioferrite spinel in Cretaceous/Tertiary boundary sediments of the Pacific basin: Remnants of hot, early ejecta from the Chicxulub impact?<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1995-05-01">May 1995</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Kyte, Frank T.; Bostwick, Jennifer A.</span> </li> <li> Earth and Planetary Science Letters, Vol. 132, Issue 1-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0012-821X(95)00051-D" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0012-821X(95)00051-D<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/RevModPhys.50.S1" target="_blank" rel="noopener noreferrer" class="name">Report to the American Physical Society by the study group on nuclear fuel cycles and waste management<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1978-01-01">January 1978</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Hebel, L. Charles; Christensen, Eldon L.; Donath, Fred A.</span> </li> <li> Reviews of Modern Physics, Vol. 50, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/RevModPhys.50.S1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/RevModPhys.50.S1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jhazmat.2016.05.085" target="_blank" rel="noopener noreferrer" class="name">Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-11-01">November 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Calla-Choque, D.; Nava-Alonso, F.; Fuentes-Aceituno, J. C.</span> </li> <li> Journal of Hazardous Materials, Vol. 317</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jhazmat.2016.05.085" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jhazmat.2016.05.085<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1180/minmag.1985.049.351.04" target="_blank" rel="noopener noreferrer" class="name">Disposal of high-level nuclear wastes: a geological perspective<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1985-04-01">April 1985</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Ringwood, A. E.</span> </li> <li> Mineralogical Magazine, Vol. 49, Issue 351</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1180/minmag.1985.049.351.04" class="text-muted" target="_blank" rel="noopener noreferrer">10.1180/minmag.1985.049.351.04<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/acs.chemmater.7b03567" target="_blank" rel="noopener noreferrer" class="name">Aqueous Synthesis of Technetium-Doped Titanium Dioxide by Direct Oxidation of Titanium Powder, a Precursor for Ceramic Nuclear Waste Forms<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-11-17">November 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Lukens, Wayne W.; Saslow, Sarah A.</span> </li> <li> Chemistry of Materials, Vol. 29, Issue 24</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/acs.chemmater.7b03567" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/acs.chemmater.7b03567<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/278219a0" target="_blank" rel="noopener noreferrer" class="name">Immobilisation of high level nuclear reactor wastes in SYNROC<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1979-03-01">March 1979</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Ringwood, A. E.; Kesson, S. E.; Ware, N. G.</span> </li> <li> Nature, Vol. 278, Issue 5701</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/278219a0" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/278219a0<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1107/S0909049500016964" target="_blank" rel="noopener noreferrer" class="name"><em>IFEFFIT</em>  : interactive XAFS analysis and <em>FEFF</em> fitting<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-03-01">March 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Newville, Matthew</span> </li> <li> Journal of Synchrotron Radiation, Vol. 8, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1107/S0909049500016964" class="text-muted" target="_blank" rel="noopener noreferrer">10.1107/S0909049500016964<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.physb.2004.09.081" target="_blank" rel="noopener noreferrer" class="name">Evidences of the stability of magnetite in soil from Northeastern Argentina by Mössbauer spectroscopy and magnetization measurements<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2004-12-01">December 2004</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Causevic, H.; Morrás, H.; Mijovilovich, A.</span> </li> <li> Physica B: Condensed Matter, Vol. 354, Issue 1-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.physb.2004.09.081" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.physb.2004.09.081<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1107/S1600576714019840" target="_blank" rel="noopener noreferrer" class="name">Lattice parameters and site occupancy factors of magnetite–maghemite core–shell nanoparticles. A critical study<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-09-30">September 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Cervellino, Antonio; Frison, Ruggero; Cernuto, Giuseppe</span> </li> <li> Journal of Applied Crystallography, Vol. 47, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1107/S1600576714019840" class="text-muted" target="_blank" rel="noopener noreferrer">10.1107/S1600576714019840<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (80)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1082198-photoreduction-pertechnetate-nanometer-sized-metal-oxides-new-strategies-formation-sequestration-low-valent-technetium" itemprop="url">Photoreduction of <sup>99</sup>Tc Pertechnetate by Nanometer-Sized Metal Oxides: New Strategies for Formation and Sequestration of Low-Valent Technetium</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Burton-Pye, Benjamin P.</span> ; <span class="author">Radivojevic, Ivana</span> ; <span class="author">McGregor, Donna</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of the American Chemical Society</span> </span> </div> <div class="abstract">Technetium-99 ( <sup>99</sup>Tc)(β <sup>-</sup> <sub>max</sub>: 293.7 keV; t <sub>1/2</sub>: 2.1 x 10 <sup>5</sup> years) is a byproduct of uranium-235 fission and comprises a large component of radioactive waste. Under aerobic conditions and in a neutral- basic environment, the pertechnetate anion ( <sup>99</sup>TcO <sub>4</sub> <sup>-</sup>) is stable. <sup>99</sup>TcO <sub>4</sub> <sup>-</sup> is very soluble, migrates easily through the environment and does not sorb well onto mineral surfaces, soils or sediments. This study moves forward a new strategy for the reduction of TcO <sub>4</sub> <sup>-</sup> and chemical incorporation of the reduced <sup>99</sup>Tc into a metal oxide material. This strategy employs a single material,<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> a polyoxometalate (POM), α <sub>2-</sub>[P <sub>2</sub>W <sub>17</sub>O <sub>61</sub>] <sup>10-</sup>, that can be photoactivated in the presence of 2-propanol to transfer electrons to TcO <sub>4</sub> <sup>-</sup> and incorporate the reduced <sup>99</sup>Tc covalently into the α <sub>2</sub> <sup>-</sup> framework to form the Tc <sup>V</sup>O species, Tc <sup>V</sup>O(α <sub>2-</sub>P <sub>2</sub>W <sub>17</sub>O <sub>61</sub>) <sup>7-</sup>. This occurs via the formation of an intermediate species that slowly converts to Tc <sup>V</sup>O(α <sub>2-</sub>P <sub>2</sub>W <sub>17</sub>O <sub>61</sub>) <sup>7-</sup>. EXAFS and XANES analysis and preliminary EPR analysis, suggests that the intermediate consists of a Tc(IV) α <sub>2</sub>- species where the <sup>99</sup>Tc is likely bound to only 2 of the 4 W-O oxygen atoms in the α <sub>2-</sub>[P <sub>2</sub>W <sub>17</sub>O <sub>61</sub>] <sup>10-</sup> defect. This intermediate then oxidizes and converts to the <sup>99</sup>Tc <sup>V</sup>O(α <sub>2-</sub>P <sub>2</sub>W <sub>17</sub>O <sub>61</sub>) <sup>7-</sup> product. The reduction and incorporation of <sup>99</sup>TcO <sup>4-</sup> was accomplished in a ''one pot'' reaction using both sunlight and UV irradiation, and monitored as a function of time using multinuclear NMR and radio TLC. The process was further probed by the ''step-wise'' generation of reduced α <sub>2-</sub>P <sub>2</sub>W <sub>17</sub>O <sub>61</sub> <sup>12-</sup> through bulk electrolysis followed by the addition of TcO <sub>4</sub> <sup>-</sup>. The reduction and incorporation of ReO <sub>4</sub> <sup>-</sup>, as a non-radioactive surrogate for <sup>99</sup>Tc, does not proceed through the intermediate species, and Re <sup>V</sup>O is incorporated quickly into the α <sub>2-</sub>[P <sub>2</sub>W <sub>17</sub>O <sub>61</sub>] <sub>10-</sub> defect. These observations are consistent with the periodic trends of <sup>99</sup>Tc and Re. Specifically, <sup>99</sup>Tc is more easily reduced compared to Re. In addition to serving as models for metal oxides, POMs may also provide a suitable platform to study the molecular level dynamics and mechanisms of the reduction and incorporation of Tc into a material.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1021/ja2060929" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1082198" data-product-type="Journal Article" data-product-subtype="FT" >10.1021/ja2060929</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1082198" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1082198" data-product-type="Journal Article" data-product-subtype="FT" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1029091-goethite-bench-scale-large-scale-preparation-tests" itemprop="url">Goethite Bench-scale and Large-scale Preparation Tests</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Josephson, Gary B.</span> ; <span class="author">Westsik, Joseph H.</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.2172/1029091" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1029091" data-product-type="Technical Report" data-product-subtype="" >10.2172/1029091</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1029091" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1029091" data-product-type="Technical Report" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1482527-aqueous-synthesis-technetium-doped-titanium-dioxide-direct-oxidation-titanium-powder-precursor-ceramic-nuclear-waste-forms" itemprop="url">Aqueous Synthesis of Technetium-Doped Titanium Dioxide by Direct Oxidation of Titanium Powder, a Precursor for Ceramic Nuclear Waste Forms</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Lukens, Wayne W.</span> ; <span class="author">Saslow, Sarah A.</span> <span class="text-muted pubdata"> - Chemistry of Materials</span> </span> </div> <div class="abstract">Technetium-99 (Tc) is a problematic fission product that complicates the long-term disposal of nuclear waste due to its long half-life, high fission yield, and the environmental mobility of pertechnetate, its stable form in aerobic environments. One approach to preventing Tc contamination is through incorporation into durable waste forms based on weathering-resistant minerals such as rutile (titanium dioxide). Here, the incorporation of technetium into titanium dioxide by means of simple, aqueous chemistry - direct oxidation of titanium powder in the presence of ammonium fluoride - is achieved. X-ray absorption fine structure spectroscopy and diffuse reflectance spectroscopy indicate that Tc(IV) replaces Ti(IV)<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> within the structure. Rather than being incorporated as isolated Tc(IV) ions, Tc is present as pairs of edge-sharing Tc(IV) octahedra similar to molecular Tc(IV) complexes such as [(H <sub>2</sub>EDTA)TcIV](μ-O) <sub>2</sub>. Technetium-doped TiO <sub>2</sub> was suspended in deionized water under aerobic conditions, and the Tc leached under these conditions was followed for 8 months. The normalized release rate of Tc (LR <sub>Tc</sub>) from the TiO <sub>2</sub> particles is low (3 × 10 <sup>-6</sup>g m <sup>-2</sup>d <sup>-1</sup>), which illustrates the potential utility of TiO <sub>2</sub> as waste form. However, the small size of the as-prepared TiO <sub>2</sub> nanoparticles results in an estimated retention of Tc of 10 <sup>4</sup> years, which is only a fraction of the half-life of Tc (2.1 × 10 <sup>5</sup> years).</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1021/acs.chemmater.7b03567" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1482527" data-product-type="Journal Article" data-product-subtype="AM" >10.1021/acs.chemmater.7b03567</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1482527" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1482527" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1009008-xafs-study-chemical-structural-states-technetium-fe-iii-oxide-co-precipitates" itemprop="url">XAFS Study of the Chemical and Structural States of Technetium in Fe(III) Oxide Co-precipitates</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Conference</small><span class="authors"> <span class="author">Heald, S.M.</span> ; <span class="author">Zachara, J.M.</span> ; <span class="author">Jeon, B.-H.</span> ; <span class="author">...</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">XAFS has been used to study the chemical state and structural environment of technetium in Fe(III) oxide co-precipitates. {sup 99}Technetium is an abundant fission product which poses a significant environmental hazard due to its long half-life, abundance in nuclear wastes, and environmental mobility as the pertechnetate ion [Tc(VII)O{sub 4}{sup -}] under oxidizing conditions. Tetravalent Tc [Tc(IV)] is the stable valence state under reducing or anoxic conditions where its environmental mobility is significantly lowered by formation of a sparingly soluble, hydrated amorphous oxide precipitate [Tc(IV)O{sub 2} {center_dot} nH{sub 2}O(s)]. We have been studying the kinetics and solid products resulting from abiotic<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> reduction of Tc(VII)O{sub 4}{sup -} by aqueous, adsorbed, and structural Fe(II) to provide insights on Tc migration in microaerophilic groundwaters. The reduction reaction yields Fe/Tc precipitates of variable structures that have not been previously studied. For the homogeneous reaction with aqueous Fe(II) at relatively high Tc:Fe concentrations, the predominant redox product is a solid containing Tc(IV) dimers attached in a bidentate edge-sharing configuration to FeO6 octahedra on the surface or unoccupied interior sites of a ferrihydrite-like precipitate. A similar ferrihydrite-type solid is formed on the surface of Fe oxide minerals such a hematite and goethite following the heterogeneous reaction of Tc(VII)O{sub 4}{sup -} with surface-complexed Fe(II). These co-precipitates greatly slow the oxidation rate of Tc(IV) relative to amorphous Tc(IV)O{sub 2} {center_dot} nH{sub 2}O(s), possibly allowing for the long term sequestration of {sup 99}Tc in stable (bio)geochemical mineral forms that may reduce the long term environmental risk of {sup 99}Tc subsurface contamination.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1372995-synthesis-characterization-coordinated-alkali-pertechnetates" itemprop="url">Synthesis and Characterization of 5- and 6- Coordinated Alkali Pertechnetates</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Weaver, Jamie</span> ; <span class="author">Soderquist, Chuck</span> ; <span class="author">Gassman, Paul</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - MRS Advances</span> </span> </div> <div class="abstract">The local chemistry of technetium-99 ( <sup>99</sup>Tc) in oxide glasses is important for understanding the incorporation and long-term release of Tc from nuclear waste glasses, both those for legacy defense wastes and fuel reprocessing wastes. Tc preferably forms Tc(VII), Tc(IV), or Tc(0) in glass, depending on the level of reduction of the melt. Tc(VII) in oxide glasses is normally assumed to be isolated pertechnetate TcO <sub>4</sub> <sup>-</sup>anions surrounded by alkali, but can occasionally precipitate as alkali pertechnetate salts such as KTcO <sub>4</sub>and NaTcO <sub>4</sub>when Tc concentration is high. In these cases, Tc(VII) is 4-coordinated by oxygen. A reinvestigation of the<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> chemistry of alkali-technetium-oxides formed under oxidizing conditions and at temperatures used to prepare nuclear waste glasses showed that higher coordinated alkali Tc(VII) oxide species had been reported, including those with the TcO <sub>5</sub> <sup>-</sup>and TcO <sub>6</sub> <sup>-</sup>anions. The chemistry of alkali Tc(VII) and other alkali-Tc-oxides is reviewed, along with relevant synthesis conditions. Additionally, we report attempts to make 5- and 6-coordinate pertechnetate compounds of K, Na, and Li, i.e. TcO <sub>5</sub> <sup>-</sup>and TcO <sub>6</sub> <sup>-</sup>. It was found that higher coordinated species are very sensitive to water, and easily decompose into their respective pertechnetates. It was difficult to obtain pure compounds, but mixtures of the pertechnetate and other phase(s) were frequently found, as evidenced by x-ray absorption spectroscopy (XAS), neutron diffraction (ND), and Raman spectroscopy. Low temperature electron paramagnetic resonance (EPR) measurements showed the possibility of Tc(IV) and Tc(VI) in Na <sub>3</sub>TcO <sub>5</sub>and Na <sub>5</sub>TcO <sub>6</sub>compounds. It was hypothesized that the smaller counter cation would result in more stable pertechnetates. To confirm the synthesis method, LiReO <sub>4</sub>and Li <sub>5</sub>ReO <sub>6</sub>were prepared, and their Raman spectra match those in the literature. Subsequently, the Tc versions LiTcO <sub>4</sub>and Li <sub>5</sub>TcO <sub>6</sub>were synthesized and characterized by ND, Raman spectroscopy, XANES, and EXAFS. The Li <sub>5</sub>TcO <sub>6</sub>was a marginally stable compound that appears to have the same structure as that known for Li <sub>5</sub>ReO <sub>6</sub>. Implications of the experimental work on stability of alkali technetate compounds and possible role in the volatilization of Tc are discussed.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1557/adv.2017.18" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1372995" data-product-type="Journal Article" data-product-subtype="AC" >10.1557/adv.2017.18</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item d-block d-inline-small"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item d-block d-inline-small"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item d-block d-inline-small"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/css/ostigov.fonts.191107.1502.css" rel="stylesheet"> <script src="/js/ostigov.191107.1502.js"></script><noscript></noscript> <script defer src="/js/ostigov.biblio.191107.1502.js"></script><noscript></noscript> <script defer src="/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- OSTI.GOV v.191107.1502 --> </html>