skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasma Surface Interactions: Bridging from the Surface to the Micron Frontier through Leadership Class Computing (Final Technical Progress Report)

Technical Report ·
DOI:https://doi.org/10.2172/1484916· OSTI ID:1484916

The performance demands on plasma-facing components (PFCs) in future fusion power plants are beyond the capability of current materials. In defining the plasma-surface interaction (PSI), it is evident that three coupled spatial regions influence PFC materials evolution and performance. These regions consist of (1) the edge and scrape-off layer region of the plasma, (2) the near-surface material response to extreme thermal and particle fluxes under the influence of, and feedback to, the plasma sheath, and (3) the structural material’s response to an intense, 14 MeV peaked neutron spectrum, which produces very high concentrations of transmuted elements through (n,p) and (n,α) reactions and structural material property degradation. The objective of this project is to develop and deploy validated, high-performance simulation tools capable of predicting the performance of tungsten-based plasma-facing components (PFCs) in a burning fusion plasma environment, which includes modeling surface morphology evolution in either erosion or re-deposition regimes, and the recycling of hydrogen species. This requires the development of a leadership-scale computational code to predict PFC behavior that is well integrated to a suite of multiscale modeling techniques to bridge the scales needed to address complex physical and computational issues at the plasma surface interface and the transition region below the surface where neutron damage processes in the bulk dominate material behavior. Successful completion of this project will provide PFC simulation tools to evaluate steady-state performance of tungsten-based PFC and divertor components in burning plasma environments. This will enable the identification of critical experiments to confirm whether practical PFC solutions exist for magnetic fusion energy beyond ITER. More specifically, the research activities within this project focus on two broadly defined research thrusts: 1) Developing a new simulation code, Xolotl-PSI to predict PFC operating lifetime and performance, that is specifically designed to take advantage of leadership class computing facilities; and 2) Integrating and applying discrete particle-based, as well as continuum-based, multiscale modeling techniques to provide scientific discovery of the mechanisms controlling PFC and bulk materials evolution under fusion plasma and 14-MeV neutron exposure; in this thrust, the challenge of scale-bridging between atomistic/microstructural modeling and the continuum-scale of PFC device performance is achieved through multiscale modeling techniques. Throughout the grant period, research at UMass Amherst focused on the atomic-scale analysis of the dynamics and kinetics (transport and reactions) of small mobile helium clusters near surfaces and grain boundaries in plasma-exposed tungsten, as well as the proper parameterization and incorporation of these processes into our SciDAC team’s continuum-level cluster dynamics code (Xolotl). Our work also included characterization of large-scale molecular-dynamics (MD) simulation results of helium implantation into tungsten based on the findings of our analysis and comparisons of Xolotl simulation predictions with the large-scale MD simulation results for Xolotl validation purposes; emphasis was placed on the impact of helium cluster dynamics/kinetics on tungsten surface morphology, near-surface tungsten structure, and helium retention. Furthermore, our work included initiation of a research program on evaluating the impact of structural defects in tungsten due to plasma exposure (such as helium nanobubbles) on tungsten’s thermophysical properties, focusing on lattice thermal conductivity. Our studies contributed to a fundamental understanding of the effects of plasma-surface interactions on the dynamical response of plasma-facing materials in nuclear fusion devices and the development of predictive hierarchical multiscale computational tools for the quantitative description of the material’s dynamical response to plasma exposure.

Research Organization:
Univ. of Massachusetts, Amherst, MA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR). Scientific Discovery through Advanced Computing (SciDAC)
Contributing Organization:
University of Tennessee, Knoxville; University of Missouri, Columbia; Oak Ridge National Laboratory (ORNL)
DOE Contract Number:
SC0008875
OSTI ID:
1484916
Report Number(s):
DOE-UMASS-SC0008875
Resource Relation:
Related Information: See related Identifiers/DOIs below.
Country of Publication:
United States
Language:
English

References (13)

Modeling Helium Segregation to the Surfaces of Plasma-Exposed Tungsten as a Function of Temperature and Surface Orientation journal January 2017
Helium segregation and transport behavior near ⟨100⟩ and ⟨110⟩ symmetric tilt grain boundaries in tungsten journal June 2018
Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing journal August 2015
Dynamics of Small Mobile Helium Clusters Near a Symmetric Tilt Grain Boundary of Plasma-Exposed Tungsten journal January 2017
Benchmarks and Tests of a Multidimensional Cluster Dynamics Model of Helium Implantation in Tungsten journal January 2017
Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten journal October 2015
Helium impurity transport on grain boundaries: Enhanced or inhibited? journal June 2015
Dynamics of small mobile helium clusters near tungsten surfaces journal August 2014
Thermal conductivity of tungsten: Effects of plasma-related structural defects from molecular-dynamics simulations journal August 2017
Helium segregation on surfaces of plasma-exposed tungsten journal January 2016
Large-scale atomistic simulations of low-energy helium implantation into tungsten single crystals journal February 2018
Design of semiconductor ternary quantum dots with optimal optoelectronic function journal May 2013
Interactions of mobile helium clusters with surfaces and grain boundaries of plasma-exposed tungsten journal May 2014