skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal structure of vardenafil hydrochloride trihydrate, C 23H 33N 6O 4 SCl (H 2O) 3

Abstract

The crystal structure of vardenafil hydrochloride trihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Vardenafil hydrochloride trihydrate crystallizes in space group C2/ c(#15) with a= 34.78347(16), b= 11.56752(4), c= 14.69308(5) Å, β= 93.3410(4), V= 5901.839(30) Å 3, and Z= 8. The fused ring system and the phenyl ring are nearly co-planar; the interplanar angle between them is 6.0°. Two intramolecular hydrogen bonds help determine this conformation. These planes stack along the c-axis. The side chains of these ring systems have a large U iso and are neighbors in the stacks. Along the a-axis, these stacks are separated by hydrophilic layers of chloride, water molecules, and the positively charged nitrogen atoms of the vardenafil cation. Hydrogen bonds are prominent in the crystal structure. The protonated nitrogen atom forms a strong hydrogen bond to the chloride anion. The water molecules form a hexagon, making hydrogen bonds with themselves, as well as the C1 and a ring nitrogen atom. These discrete hydrogen bonds form a cluster, and there is no extended hydrogen bond network. There are many C–H⋯Cl, C–H⋯O, and C–H⋯N hydrogen bonds, which (although individually weak) contribute significantly to the crystal energy.more » The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1620.« less

Authors:
; ORCiD logo; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
INDUSTRY
OSTI Identifier:
1484780
Resource Type:
Journal Article
Journal Name:
Powder Diffraction
Additional Journal Information:
Journal Volume: 33; Journal Issue: 4; Journal ID: ISSN 0885-7156
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Wheatley, Austin M., Kaduk, James A., Gindhart, Amy M., and Blanton, Thomas N. Crystal structure of vardenafil hydrochloride trihydrate, C23H33N6O4 SCl (H2O)3. United States: N. p., 2018. Web. doi:10.1017/S0885715618000696.
Wheatley, Austin M., Kaduk, James A., Gindhart, Amy M., & Blanton, Thomas N. Crystal structure of vardenafil hydrochloride trihydrate, C23H33N6O4 SCl (H2O)3. United States. doi:10.1017/S0885715618000696.
Wheatley, Austin M., Kaduk, James A., Gindhart, Amy M., and Blanton, Thomas N. Thu . "Crystal structure of vardenafil hydrochloride trihydrate, C23H33N6O4 SCl (H2O)3". United States. doi:10.1017/S0885715618000696.
@article{osti_1484780,
title = {Crystal structure of vardenafil hydrochloride trihydrate, C23H33N6O4 SCl (H2O)3},
author = {Wheatley, Austin M. and Kaduk, James A. and Gindhart, Amy M. and Blanton, Thomas N.},
abstractNote = {The crystal structure of vardenafil hydrochloride trihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Vardenafil hydrochloride trihydrate crystallizes in space group C2/c(#15) with a= 34.78347(16), b= 11.56752(4), c= 14.69308(5) Å,β= 93.3410(4), V= 5901.839(30) Å3, and Z= 8. The fused ring system and the phenyl ring are nearly co-planar; the interplanar angle between them is 6.0°. Two intramolecular hydrogen bonds help determine this conformation. These planes stack along the c-axis. The side chains of these ring systems have a large Uiso and are neighbors in the stacks. Along the a-axis, these stacks are separated by hydrophilic layers of chloride, water molecules, and the positively charged nitrogen atoms of the vardenafil cation. Hydrogen bonds are prominent in the crystal structure. The protonated nitrogen atom forms a strong hydrogen bond to the chloride anion. The water molecules form a hexagon, making hydrogen bonds with themselves, as well as the C1 and a ring nitrogen atom. These discrete hydrogen bonds form a cluster, and there is no extended hydrogen bond network. There are many C–H⋯Cl, C–H⋯O, and C–H⋯N hydrogen bonds, which (although individually weak) contribute significantly to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1620.},
doi = {10.1017/S0885715618000696},
journal = {Powder Diffraction},
issn = {0885-7156},
number = 4,
volume = 33,
place = {United States},
year = {2018},
month = {10}
}

Works referenced in this record:

Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures
journal, March 2008

  • Macrae, Clare F.; Bruno, Ian J.; Chisholm, James A.
  • Journal of Applied Crystallography, Vol. 41, Issue 2
  • DOI: 10.1107/S0021889807067908

A twelve-analyzer detector system for high-resolution powder diffraction
journal, July 2008

  • Lee, Peter L.; Shu, Deming; Ramanathan, Mohan
  • Journal of Synchrotron Radiation, Vol. 15, Issue 5
  • DOI: 10.1107/S0909049508018438

Crystal structure of atomoxetine hydrochloride (Strattera), C 17 H 22 NOCl
journal, June 2014


Retrieval of Crystallographically-Derived Molecular Geometry Information
journal, November 2004

  • Bruno, Ian J.; Cole, Jason C.; Kessler, Magnus
  • Journal of Chemical Information and Computer Sciences, Vol. 44, Issue 6
  • DOI: 10.1021/ci049780b

DASH : a program for crystal structure determination from powder diffraction data
journal, November 2006

  • David, William I. F.; Shankland, Kenneth; van de Streek, Jacco
  • Journal of Applied Crystallography, Vol. 39, Issue 6
  • DOI: 10.1107/S0021889806042117

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al 2 O 3
journal, April 1987

  • Thompson, P.; Cox, D. E.; Hastings, J. B.
  • Journal of Applied Crystallography, Vol. 20, Issue 2
  • DOI: 10.1107/S0021889887087090

EXPO2013 : a kit of tools for phasing crystal structures from powder data
journal, July 2013

  • Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo
  • Journal of Applied Crystallography, Vol. 46, Issue 4
  • DOI: 10.1107/S0021889813013113

EXPGUI , a graphical user interface for GSAS
journal, April 2001


The Cambridge Structural Database
journal, April 2016

  • Groom, Colin R.; Bruno, Ian J.; Lightfoot, Matthew P.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 72, Issue 2, p. 171-179
  • DOI: 10.1107/S2052520616003954

C RYSTAL14 : A program for the ab initio investigation of crystalline solids
journal, March 2014

  • Dovesi, Roberto; Orlando, Roberto; Erba, Alessandro
  • International Journal of Quantum Chemistry, Vol. 114, Issue 19
  • DOI: 10.1002/qua.24658

A correction for powder diffraction peak asymmetry due to axial divergence
journal, December 1994

  • Finger, L. W.; Cox, D. E.; Jephcoat, A. P.
  • Journal of Applied Crystallography, Vol. 27, Issue 6
  • DOI: 10.1107/S0021889894004218

Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea
journal, December 1994

  • Gatti, C.; Saunders, V. R.; Roetti, C.
  • The Journal of Chemical Physics, Vol. 101, Issue 12
  • DOI: 10.1063/1.467882

FOX , `free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction
journal, November 2002

  • Favre-Nicolin, Vincent; Černý, Radovan
  • Journal of Applied Crystallography, Vol. 35, Issue 6
  • DOI: 10.1107/S0021889802015236

Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations
journal, October 2012

  • Peintinger, Michael F.; Oliveira, Daniel Vilela; Bredow, Thomas
  • Journal of Computational Chemistry, Vol. 34, Issue 6
  • DOI: 10.1002/jcc.23153

New software for statistical analysis of Cambridge Structural Database data
journal, June 2011

  • Sykes, Richard A.; McCabe, Patrick; Allen, Frank H.
  • Journal of Applied Crystallography, Vol. 44, Issue 4
  • DOI: 10.1107/S0021889811014622

A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results
journal, August 2008

  • Wang, Jun; Toby, Brian H.; Lee, Peter L.
  • Review of Scientific Instruments, Vol. 79, Issue 8
  • DOI: 10.1063/1.2969260

Phenomenological model of anisotropic peak broadening in powder diffraction
journal, April 1999


Bonded-atom fragments for describing molecular charge densities
journal, January 1977


Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)
journal, December 2014

  • van de Streek, Jacco; Neumann, Marcus A.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 70, Issue 6, p. 1020-1032
  • DOI: 10.1107/S2052520614022902

Chemical analysis by diffraction: the Powder Diffraction File™
journal, June 2017