skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal structure of lubiprostone Polymorph B, C 20H 32F 2O 5

Abstract

The crystal structure of lubiprostone has been refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Lubiprostone crystallizes in space group P1 (#1) with a= 9.02025(2), b= 10.72121(2), c= 12.32817(4) Å, α= 78.5566(2), β= 69.6858(2), γ= 77.3292(2)°, V = 1081.069(3) Å 3, and Z = 2. The two independent molecules occur in an extended conformation, aligned approximately along the c-axis. The hydrophobic side chains are adjacent to each other, resulting in layers parallel to the acplane. The two carboxylic acid groups form an eight-membered ring, resulting in dimers of the two independent molecules. Each hydroxyl group acts as a hydrogen bond donor to the ketone of the fused ring system. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1622.

Authors:
ORCiD logo; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
INDUSTRY
OSTI Identifier:
1484778
Resource Type:
Journal Article
Journal Name:
Powder Diffraction
Additional Journal Information:
Journal Volume: 33; Journal Issue: 4; Journal ID: ISSN 0885-7156
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Kaduk, James A., Gindhart, Amy M., and Blanton, Thomas N. Crystal structure of lubiprostone Polymorph B, C20H32F2O5. United States: N. p., 2018. Web. doi:10.1017/S0885715618000660.
Kaduk, James A., Gindhart, Amy M., & Blanton, Thomas N. Crystal structure of lubiprostone Polymorph B, C20H32F2O5. United States. doi:10.1017/S0885715618000660.
Kaduk, James A., Gindhart, Amy M., and Blanton, Thomas N. Mon . "Crystal structure of lubiprostone Polymorph B, C20H32F2O5". United States. doi:10.1017/S0885715618000660.
@article{osti_1484778,
title = {Crystal structure of lubiprostone Polymorph B, C20H32F2O5},
author = {Kaduk, James A. and Gindhart, Amy M. and Blanton, Thomas N.},
abstractNote = {The crystal structure of lubiprostone has been refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Lubiprostone crystallizes in space group P1 (#1) with a= 9.02025(2), b= 10.72121(2), c= 12.32817(4) Å, α= 78.5566(2), β= 69.6858(2), γ= 77.3292(2)°,V = 1081.069(3) Å3, and Z = 2. The two independent molecules occur in an extended conformation, aligned approximately along the c-axis. The hydrophobic side chains are adjacent to each other, resulting in layers parallel to theacplane. The two carboxylic acid groups form an eight-membered ring, resulting in dimers of the two independent molecules. Each hydroxyl group acts as a hydrogen bond donor to the ketone of the fused ring system. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1622.},
doi = {10.1017/S0885715618000660},
journal = {Powder Diffraction},
issn = {0885-7156},
number = 4,
volume = 33,
place = {United States},
year = {2018},
month = {9}
}

Works referenced in this record:

Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures
journal, March 2008

  • Macrae, Clare F.; Bruno, Ian J.; Chisholm, James A.
  • Journal of Applied Crystallography, Vol. 41, Issue 2
  • DOI: 10.1107/S0021889807067908

A twelve-analyzer detector system for high-resolution powder diffraction
journal, July 2008

  • Lee, Peter L.; Shu, Deming; Ramanathan, Mohan
  • Journal of Synchrotron Radiation, Vol. 15, Issue 5
  • DOI: 10.1107/S0909049508018438

Crystal structure of atomoxetine hydrochloride (Strattera), C 17 H 22 NOCl
journal, June 2014


Retrieval of Crystallographically-Derived Molecular Geometry Information
journal, November 2004

  • Bruno, Ian J.; Cole, Jason C.; Kessler, Magnus
  • Journal of Chemical Information and Computer Sciences, Vol. 44, Issue 6
  • DOI: 10.1021/ci049780b

DASH : a program for crystal structure determination from powder diffraction data
journal, November 2006

  • David, William I. F.; Shankland, Kenneth; van de Streek, Jacco
  • Journal of Applied Crystallography, Vol. 39, Issue 6
  • DOI: 10.1107/S0021889806042117

Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al 2 O 3
journal, April 1987

  • Thompson, P.; Cox, D. E.; Hastings, J. B.
  • Journal of Applied Crystallography, Vol. 20, Issue 2
  • DOI: 10.1107/S0021889887087090

The assignment and validation of metal oxidation states in the Cambridge Structural Database
journal, June 2000

  • Shields, Gregory P.; Raithby, Paul R.; Allen, Frank H.
  • Acta Crystallographica Section B Structural Science, Vol. 56, Issue 3
  • DOI: 10.1107/S0108768199015086

EXPO2013 : a kit of tools for phasing crystal structures from powder data
journal, July 2013

  • Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo
  • Journal of Applied Crystallography, Vol. 46, Issue 4
  • DOI: 10.1107/S0021889813013113

EXPGUI , a graphical user interface for GSAS
journal, April 2001


The Cambridge Structural Database
journal, April 2016

  • Groom, Colin R.; Bruno, Ian J.; Lightfoot, Matthew P.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 72, Issue 2, p. 171-179
  • DOI: 10.1107/S2052520616003954

Encoding and decoding hydrogen-bond patterns of organic compounds
journal, April 1990


C RYSTAL14 : A program for the ab initio investigation of crystalline solids
journal, March 2014

  • Dovesi, Roberto; Orlando, Roberto; Erba, Alessandro
  • International Journal of Quantum Chemistry, Vol. 114, Issue 19
  • DOI: 10.1002/qua.24658

A correction for powder diffraction peak asymmetry due to axial divergence
journal, December 1994

  • Finger, L. W.; Cox, D. E.; Jephcoat, A. P.
  • Journal of Applied Crystallography, Vol. 27, Issue 6
  • DOI: 10.1107/S0021889894004218

Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea
journal, December 1994

  • Gatti, C.; Saunders, V. R.; Roetti, C.
  • The Journal of Chemical Physics, Vol. 101, Issue 12
  • DOI: 10.1063/1.467882

FOX , `free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction
journal, November 2002

  • Favre-Nicolin, Vincent; Černý, Radovan
  • Journal of Applied Crystallography, Vol. 35, Issue 6
  • DOI: 10.1107/S0021889802015236

Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations
journal, October 2012

  • Peintinger, Michael F.; Oliveira, Daniel Vilela; Bredow, Thomas
  • Journal of Computational Chemistry, Vol. 34, Issue 6
  • DOI: 10.1002/jcc.23153

New software for statistical analysis of Cambridge Structural Database data
journal, June 2011

  • Sykes, Richard A.; McCabe, Patrick; Allen, Frank H.
  • Journal of Applied Crystallography, Vol. 44, Issue 4
  • DOI: 10.1107/S0021889811014622

A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results
journal, August 2008

  • Wang, Jun; Toby, Brian H.; Lee, Peter L.
  • Review of Scientific Instruments, Vol. 79, Issue 8
  • DOI: 10.1063/1.2969260

Phenomenological model of anisotropic peak broadening in powder diffraction
journal, April 1999


Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals
journal, August 1995

  • Bernstein, Joel; Davis, Raymond E.; Shimoni, Liat
  • Angewandte Chemie International Edition in English, Vol. 34, Issue 15
  • DOI: 10.1002/anie.199515551

Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)
journal, December 2014

  • van de Streek, Jacco; Neumann, Marcus A.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 70, Issue 6, p. 1020-1032
  • DOI: 10.1107/S2052520614022902

Chemical analysis by diffraction: the Powder Diffraction File™
journal, June 2017