skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Parametric sensitivity and uncertainty quantification in the version 1 of E3SM Atmosphere Model based on short Perturbed Parameters Ensemble simulations

Abstract

Abstract The atmospheric component of Energy Exascale Earth System Model (E3SM) version 1 (EAMv1) has included many new features in the physics parameterizations compared to its predecessors. Potential complex nonlinear interactions among the new features create a significant challenge for understanding the model behaviors and parameter tuning. Using the one-at-a-time method, the benefit of tuning one parameter may offset the benefit of tuning another parameter, or improvement in one target variable may lead to degradation in another target variable. To better understand the EAMv1 model behaviors and physics, we conducted a large number of short simulations (3 days) in which 18 parameters carefully selected from parameterizations of deep convection, shallow convection and cloud macrophysics and microphysics were perturbed simultaneously using the Latin Hypercube sampling method. From the Perturbed Parameters Ensemble (PPE) simulations and use of different skill score functions, we identified the most sensitive parameters, quantified how the model responds to changes of the parameters for both global mean and spatial distribution, and estimated the maximum likelihood of model parameter space for a number of important fidelity metrics. Comparison of the parametric sensitivity using simulations of two different lengths suggests that PPE using short simulations has some bearing on understandingmore » parametric sensitivity of longer simulations. Results from this analysis provide a more comprehensive picture of the EAMv1 behavior. Furthermore, the difficulty in reducing biases in multiple variables simultaneously highlights the need of characterizing model structural uncertainty (so-called embedded errors) to inform future development efforts.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [3]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Nanjing Univ., Nanjing (China); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Univ. of Wisconsin-Milwaukee, Milwaukee, WI (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory, Oak Ridge Leadership Computing Facility (OLCF); Brookhaven National Lab. (BNL), Upton, NY (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1484410
Alternate Identifier(s):
OSTI ID: 1482569; OSTI ID: 1484411; OSTI ID: 1496811; OSTI ID: 1498472
Report Number(s):
BNL-209469-2018-JAAM; PNNL-SA-138521; LLNL-JRNL-765390
Journal ID: ISSN 2169-897X
Grant/Contract Number:  
SC0012704; DEAC02‐05CH11231; DE‐AC05‐00OR22725; DE‐SC0016287; DE‐AC52‐07NA27344; DE‐AC06‐76RLO 1830; AC05-76RL01830; AC52-07NA27344
Resource Type:
Journal Article: Published Article
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 123; Journal Issue: 23; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Parametric sensitivity; uncertainty quantification; E3SM; PPE; short simulations; sensitivity analysis; Perturbed Parameters Ensemble, Energy Exascale Earth System Model

Citation Formats

Qian, Yun, Wan, Hui, Yang, Ben, Golaz, Jean -Christophe, Harrop, Bryce, Hou, Zhangshuan, Larson, Vincent E., Leung, L. Ruby, Lin, Guangxing, Lin, Wuyin, Ma, Po -Lun, Ma, Hsi -Yen, Rasch, Phil, Singh, Balwinder, Wang, Hailong, Xie, Shaocheng, and Zhang, Kai. Parametric sensitivity and uncertainty quantification in the version 1 of E3SM Atmosphere Model based on short Perturbed Parameters Ensemble simulations. United States: N. p., 2018. Web. doi:10.1029/2018JD028927.
Qian, Yun, Wan, Hui, Yang, Ben, Golaz, Jean -Christophe, Harrop, Bryce, Hou, Zhangshuan, Larson, Vincent E., Leung, L. Ruby, Lin, Guangxing, Lin, Wuyin, Ma, Po -Lun, Ma, Hsi -Yen, Rasch, Phil, Singh, Balwinder, Wang, Hailong, Xie, Shaocheng, & Zhang, Kai. Parametric sensitivity and uncertainty quantification in the version 1 of E3SM Atmosphere Model based on short Perturbed Parameters Ensemble simulations. United States. doi:10.1029/2018JD028927.
Qian, Yun, Wan, Hui, Yang, Ben, Golaz, Jean -Christophe, Harrop, Bryce, Hou, Zhangshuan, Larson, Vincent E., Leung, L. Ruby, Lin, Guangxing, Lin, Wuyin, Ma, Po -Lun, Ma, Hsi -Yen, Rasch, Phil, Singh, Balwinder, Wang, Hailong, Xie, Shaocheng, and Zhang, Kai. Tue . "Parametric sensitivity and uncertainty quantification in the version 1 of E3SM Atmosphere Model based on short Perturbed Parameters Ensemble simulations". United States. doi:10.1029/2018JD028927.
@article{osti_1484410,
title = {Parametric sensitivity and uncertainty quantification in the version 1 of E3SM Atmosphere Model based on short Perturbed Parameters Ensemble simulations},
author = {Qian, Yun and Wan, Hui and Yang, Ben and Golaz, Jean -Christophe and Harrop, Bryce and Hou, Zhangshuan and Larson, Vincent E. and Leung, L. Ruby and Lin, Guangxing and Lin, Wuyin and Ma, Po -Lun and Ma, Hsi -Yen and Rasch, Phil and Singh, Balwinder and Wang, Hailong and Xie, Shaocheng and Zhang, Kai},
abstractNote = {Abstract The atmospheric component of Energy Exascale Earth System Model (E3SM) version 1 (EAMv1) has included many new features in the physics parameterizations compared to its predecessors. Potential complex nonlinear interactions among the new features create a significant challenge for understanding the model behaviors and parameter tuning. Using the one-at-a-time method, the benefit of tuning one parameter may offset the benefit of tuning another parameter, or improvement in one target variable may lead to degradation in another target variable. To better understand the EAMv1 model behaviors and physics, we conducted a large number of short simulations (3 days) in which 18 parameters carefully selected from parameterizations of deep convection, shallow convection and cloud macrophysics and microphysics were perturbed simultaneously using the Latin Hypercube sampling method. From the Perturbed Parameters Ensemble (PPE) simulations and use of different skill score functions, we identified the most sensitive parameters, quantified how the model responds to changes of the parameters for both global mean and spatial distribution, and estimated the maximum likelihood of model parameter space for a number of important fidelity metrics. Comparison of the parametric sensitivity using simulations of two different lengths suggests that PPE using short simulations has some bearing on understanding parametric sensitivity of longer simulations. Results from this analysis provide a more comprehensive picture of the EAMv1 behavior. Furthermore, the difficulty in reducing biases in multiple variables simultaneously highlights the need of characterizing model structural uncertainty (so-called embedded errors) to inform future development efforts.},
doi = {10.1029/2018JD028927},
journal = {Journal of Geophysical Research: Atmospheres},
issn = {2169-897X},
number = 23,
volume = 123,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1029/2018JD028927

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Elucidating Model Inadequacies in a Cloud Parameterization by Use of an Ensemble-Based Calibration Framework
journal, December 2007

  • Golaz, Jean-Christophe; Larson, Vincent E.; Hansen, James A.
  • Monthly Weather Review, Vol. 135, Issue 12
  • DOI: 10.1175/2007MWR2008.1

The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models
journal, May 2013


Climate projections of future extreme events accounting for modelling uncertainties and historical simulation biases
journal, March 2014

  • Brown, Simon J.; Murphy, James M.; Sexton, David M. H.
  • Climate Dynamics, Vol. 43, Issue 9-10
  • DOI: 10.1007/s00382-014-2080-1

A Bayesian Examination of Deep Convective Squall-Line Sensitivity to Changes in Cloud Microphysical Parameters
journal, February 2016


Uncertainty Quantification in Climate Modeling and Projection
journal, May 2016

  • Qian, Yun; Jackson, Charles; Giorgi, Filippo
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 5
  • DOI: 10.1175/BAMS-D-15-00297.1

Strategies for reducing the climate noise in model simulations: ensemble runs versus a long continuous run
journal, May 2014


A PDF-Based Model for Boundary Layer Clouds. Part I: Method and Model Description
journal, December 2002


How well must climate models agree with observations?
journal, October 2015

  • Notz, Dirk
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2052
  • DOI: 10.1098/rsta.2014.0164

Efficient screening of climate model sensitivity to a large number of perturbed input parameters: PERTURBED INPUT-PARAMETER SENSITIVITY
journal, July 2013

  • Covey, Curt; Lucas, Donald D.; Tannahill, John
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 3
  • DOI: 10.1002/jame.20040

Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs
journal, November 1997


Very fast simulated re-annealing
journal, January 1989


Understanding Cloud and Convective Characteristics in Version 1 of the E3SM Atmosphere Model
journal, October 2018

  • Xie, Shaocheng; Lin, Wuyin; Rasch, Philip J.
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 10
  • DOI: 10.1029/2018MS001350

Cloud Feedbacks in the Climate System: A Critical Review
journal, January 2005


Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
journal, July 2003


Bayesian analysis of computer code outputs: A tutorial
journal, October 2006


Quantification of Cloud Microphysical Parameterization Uncertainty Using Radar Reflectivity
journal, November 2012

  • van Lier-Walqui, Marcus; Vukicevic, Tomislava; Posselt, Derek J.
  • Monthly Weather Review, Vol. 140, Issue 11
  • DOI: 10.1175/MWR-D-11-00216.1

Parameter variations in prediction skill optimization at ECMWF
journal, January 2013

  • Ollinaho, P.; Bechtold, P.; Leutbecher, M.
  • Nonlinear Processes in Geophysics, Vol. 20, Issue 6
  • DOI: 10.5194/npg-20-1001-2013

Summarizing multiple aspects of model performance in a single diagram
journal, April 2001

  • Taylor, Karl E.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D7
  • DOI: 10.1029/2000JD900719

Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget
journal, February 2009

  • Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.
  • Journal of Climate, Vol. 22, Issue 3
  • DOI: 10.1175/2008JCLI2637.1

Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol–Cloud Interactions
journal, February 2015


A More Powerful Reality Test for Climate Models
journal, May 2016


Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models
journal, January 2014


Transient climate changes in a perturbed parameter ensemble of emissions-driven earth system model simulations
journal, March 2014


Large Sample Properties of Simulations Using Latin Hypercube Sampling
journal, May 1987


Parameter Tuning and Calibration of RegCM3 with MIT–Emanuel Cumulus Parameterization Scheme over CORDEX East Asia Domain
journal, October 2014


Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM): PARAMETRIC BEHAVIORS OF CLUBB IN CAM
journal, July 2015

  • Guo, Zhun; Wang, Minghuai; Qian, Yun
  • Journal of Advances in Modeling Earth Systems, Vol. 7, Issue 3
  • DOI: 10.1002/2014MS000405

History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble
journal, August 2013

  • Williamson, Daniel; Goldstein, Michael; Allison, Lesley
  • Climate Dynamics, Vol. 41, Issue 7-8
  • DOI: 10.1007/s00382-013-1896-4

Using Probability Density Functions to Derive Consistent Closure Relationships among Higher-Order Moments
journal, April 2005

  • Larson, Vincent E.; Golaz, Jean-Christophe
  • Monthly Weather Review, Vol. 133, Issue 4
  • DOI: 10.1175/MWR2902.1

Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data
journal, August 2007

  • Trenberth, Kevin E.; Smith, Lesley; Qian, Taotao
  • Journal of Hydrometeorology, Vol. 8, Issue 4
  • DOI: 10.1175/JHM600.1

The impact of structural error on parameter constraint in a climate model
journal, January 2016

  • McNeall, Doug; Williams, Jonny; Booth, Ben
  • Earth System Dynamics, Vol. 7, Issue 4
  • DOI: 10.5194/esd-7-917-2016

Considerations for parameter optimization and sensitivity in climate models
journal, November 2010

  • Neelin, J. D.; Bracco, A.; Luo, H.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 50
  • DOI: 10.1073/pnas.1015473107

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Linearization of Microphysical Parameterization Uncertainty Using Multiplicative Process Perturbation Parameters
journal, January 2014

  • van Lier-Walqui, Marcus; Vukicevic, Tomislava; Posselt, Derek J.
  • Monthly Weather Review, Vol. 142, Issue 1
  • DOI: 10.1175/MWR-D-13-00076.1

Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments
journal, July 2009

  • Rougier, Jonathan; Sexton, David M. H.; Murphy, James M.
  • Journal of Climate, Vol. 22, Issue 13
  • DOI: 10.1175/2008JCLI2533.1

Optimizing Parameters in an Atmospheric General Circulation Model
journal, September 2005

  • Severijns, C. A.; Hazeleger, W.
  • Journal of Climate, Vol. 18, Issue 17
  • DOI: 10.1175/JCLI3430.1

A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles
journal, June 2007

  • Murphy, J. M.; Booth, B. B. B.; Collins, M.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 365, Issue 1857
  • DOI: 10.1098/rsta.2007.2077

NCEP–DOE AMIP-II Reanalysis (R-2)
journal, November 2002

  • Kanamitsu, Masao; Ebisuzaki, Wesley; Woollen, Jack
  • Bulletin of the American Meteorological Society, Vol. 83, Issue 11
  • DOI: 10.1175/BAMS-83-11-1631

Diagnostics for Gaussian Process Emulators
journal, November 2009


Objective calibration of regional climate models: OBJECTIVE CALIBRATION OF RCMS
journal, December 2012

  • Bellprat, O.; Kotlarski, S.; Lüthi, D.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D23
  • DOI: 10.1029/2012JD018262

Uncertainty in predictions of the climate response to rising levels of greenhouse gases
journal, January 2005

  • Stainforth, D. A.; Aina, T.; Christensen, C.
  • Nature, Vol. 433, Issue 7024
  • DOI: 10.1038/nature03301

On the Correspondence between Short- and Long-Time-Scale Systematic Errors in CAM4/CAM5 for the Year of Tropical Convection
journal, November 2012


The Community Earth System Model: A Framework for Collaborative Research
journal, September 2013

  • Hurrell, James W.; Holland, M. M.; Gent, P. R.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 9
  • DOI: 10.1175/BAMS-D-12-00121.1

The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)
journal, January 2010

  • Chepfer, H.; Bony, S.; Winker, D.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012251

Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model
journal, January 2017

  • Williamson, Daniel B.; Blaker, Adam T.; Sinha, Bablu
  • Geoscientific Model Development, Vol. 10, Issue 4
  • DOI: 10.5194/gmd-10-1789-2017

The Role of Convective Gustiness in Reducing Seasonal Precipitation Biases in the Tropical West Pacific
journal, April 2018

  • Harrop, Bryce E.; Ma, Po‐Lun; Rasch, Philip J.
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 4
  • DOI: 10.1002/2017MS001157

Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model
journal, December 2013

  • Bogenschutz, Peter A.; Gettelman, Andrew; Morrison, Hugh
  • Journal of Climate, Vol. 26, Issue 23
  • DOI: 10.1175/JCLI-D-13-00075.1

Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model
journal, January 2016


Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction
journal, December 2004

  • Phillips, Thomas J.; Potter, Gerald L.; Williamson, David L.
  • Bulletin of the American Meteorological Society, Vol. 85, Issue 12
  • DOI: 10.1175/BAMS-85-12-1903

An Efficient Stochastic Bayesian Approach to Optimal Parameter and Uncertainty Estimation for Climate Model Predictions
journal, July 2004


A sensitivity analysis of cloud properties to CLUBB parameters in the single-column Community Atmosphere Model (SCAM5)
journal, August 2014

  • Guo, Zhun; Wang, Minghuai; Qian, Yun
  • Journal of Advances in Modeling Earth Systems, Vol. 6, Issue 3
  • DOI: 10.1002/2014MS000315

Earth Radiation Budget Experiment (ERBE): An Overview
journal, March 1982

  • Barkstrom, B. R.; Hall, J. B.
  • Journal of Energy, Vol. 6, Issue 2
  • DOI: 10.2514/3.62584

PDF Parameterization of Boundary Layer Clouds in Models with Horizontal Grid Spacings from 2 to 16 km
journal, January 2012

  • Larson, Vincent E.; Schanen, David P.; Wang, Minghuai
  • Monthly Weather Review, Vol. 140, Issue 1
  • DOI: 10.1175/MWR-D-10-05059.1

On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models
journal, February 2014


Hydrometeor Detection Using Cloudsat —An Earth-Orbiting 94-GHz Cloud Radar
journal, April 2008

  • Marchand, Roger; Mace, Gerald G.; Ackerman, Thomas
  • Journal of Atmospheric and Oceanic Technology, Vol. 25, Issue 4
  • DOI: 10.1175/2007JTECHA1006.1

Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model: UNCERTAINTY QUANTIFICATION FOR CLM4
journal, August 2012

  • Hou, Zhangshuan; Huang, Maoyi; Leung, L. Ruby
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D15
  • DOI: 10.1029/2012JD017521

Mean seasonal and spatial variability in gauge-corrected, global precipitation
journal, March 1990

  • Legates, David R.; Willmott, Cort J.
  • International Journal of Climatology, Vol. 10, Issue 2
  • DOI: 10.1002/joc.3370100202

Climate model forecast biases assessed with a perturbed physics ensemble
journal, October 2016


Identifying and removing structural biases in climate models with history matching
journal, October 2014

  • Williamson, Daniel; Blaker, Adam T.; Hampton, Charlotte
  • Climate Dynamics, Vol. 45, Issue 5-6
  • DOI: 10.1007/s00382-014-2378-z

Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles
journal, May 2010


Error Reduction and Convergence in Climate Prediction
journal, December 2008

  • Jackson, Charles S.; Sen, Mrinal K.; Huerta, Gabriel
  • Journal of Climate, Vol. 21, Issue 24
  • DOI: 10.1175/2008JCLI2112.1

Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with Other Schemes
journal, February 2015


How Much More Rain Will Global Warming Bring?
journal, July 2007


Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model: EXPLORING PARAMETER SENSITIVITIES
journal, November 2004

  • Liu, Yuqiong; Gupta, Hoshin V.; Sorooshian, Soroosh
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D21
  • DOI: 10.1029/2004JD004730

Robust Characterization of Model Physics Uncertainty for Simulations of Deep Moist Convection
journal, May 2010

  • Posselt, Derek J.; Vukicevic, Tomislava
  • Monthly Weather Review, Vol. 138, Issue 5
  • DOI: 10.1175/2009MWR3094.1

Parametric sensitivity and calibration for the Kain‑Fritsch convective parameterization scheme in the WRF model
journal, March 2014

  • Yan, H.; Qian, Y.; Lin, G.
  • Climate Research, Vol. 59, Issue 2
  • DOI: 10.3354/cr01213

An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models: AN IMPROVED HINDCAST APPROACH
journal, November 2015

  • Ma, H. -Y.; Chuang, C. C.; Klein, S. A.
  • Journal of Advances in Modeling Earth Systems, Vol. 7, Issue 4
  • DOI: 10.1002/2015MS000490

Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model
journal, January 2013


Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis
journal, January 2013


Surrogate-based analysis and optimization
journal, January 2005


Optimization of NWP model closure parameters using total energy norm of forecast error as a target
journal, January 2014

  • Ollinaho, P.; Järvinen, H.; Bauer, P.
  • Geoscientific Model Development, Vol. 7, Issue 5
  • DOI: 10.5194/gmd-7-1889-2014

Surrogate-based optimization of climate model parameters using response correction
journal, December 2011


The Annual Cycle of the Energy Budget. Part I: Global Mean and Land–Ocean Exchanges
journal, May 2008


Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds: REGIONAL TROPICAL CLOUDS IN CAM4
journal, July 2012

  • Zhang, Yuying; Xie, Shaocheng; Covey, Curt
  • Geophysical Research Letters, Vol. 39, Issue 14
  • DOI: 10.1029/2012GL052184

An evaluation of adaptive surrogate modeling based optimization with two benchmark problems
journal, October 2014


Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5
journal, April 2015

  • Qian, Yun; Yan, Huiping; Hou, Zhangshuan
  • Journal of Advances in Modeling Earth Systems, Vol. 7, Issue 2
  • DOI: 10.1002/2014MS000354

Multi-objective parameter optimization of common land model using adaptive surrogate modeling
journal, January 2015


The Art and Science of Climate Model Tuning
journal, March 2017

  • Hourdin, Frédéric; Mauritsen, Thorsten; Gettelman, Andrew
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 3
  • DOI: 10.1175/BAMS-D-15-00135.1

The hydrological cycle and its influence on climate
journal, October 1992


Annealing evolutionary stochastic approximation Monte Carlo for global optimization
journal, April 2010


The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model
journal, February 2018

  • Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 2
  • DOI: 10.1002/2017MS000962

A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons
journal, January 2018

  • Sun, Qiaohong; Miao, Chiyuan; Duan, Qingyun
  • Reviews of Geophysics, Vol. 56, Issue 1
  • DOI: 10.1002/2017RG000574

Bayesian Calibration of the Community Land Model Using Surrogates
journal, January 2015

  • Ray, J.; Hou, Z.; Huang, M.
  • SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, Issue 1
  • DOI: 10.1137/140957998

The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present)
journal, December 2003


A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions
journal, September 2015

  • Yan, Huiping; Qian, Yun; Zhao, Chun
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 17
  • DOI: 10.1002/2015JD023442