skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurements of $$\mathrm{t\overline{t}}$$ differential cross sections in proton-proton collisions at $$\sqrt{s}=$$ 13 TeV using events containing two leptons

Abstract

Measurements of differential top quark pair $$\mathrm{t\overline{t}}$$ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$$^{-1}$$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $$\mathrm{t\overline{t}}$$ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $$\mathrm{t\overline{t}}$$ and leptonic charge asymmetries.

Authors:
;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
CMS
OSTI Identifier:
1484181
Report Number(s):
FERMILAB-PUB-18-638-CMS; arXiv:1811.06625; CMS-TOP-17-014; CERN-EP-2018-252
1703993
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Journal Article
Resource Relation:
Journal Name: JHEP
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Sirunyan, Albert M, and et al. Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s}=$ 13 TeV using events containing two leptons. United States: N. p., 2018. Web.
Sirunyan, Albert M, & et al. Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s}=$ 13 TeV using events containing two leptons. United States.
Sirunyan, Albert M, and et al. Thu . "Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s}=$ 13 TeV using events containing two leptons". United States. doi:. https://www.osti.gov/servlets/purl/1484181.
@article{osti_1484181,
title = {Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s}=$ 13 TeV using events containing two leptons},
author = {Sirunyan, Albert M and et al.},
abstractNote = {Measurements of differential top quark pair $\mathrm{t\overline{t}}$ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $\mathrm{t\overline{t}}$ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $\mathrm{t\overline{t}}$ and leptonic charge asymmetries.},
doi = {},
journal = {JHEP},
number = ,
volume = ,
place = {United States},
year = {Thu Nov 15 00:00:00 EST 2018},
month = {Thu Nov 15 00:00:00 EST 2018}
}