skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isostructural metal-insulator transition in VO 2

Abstract

The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [1]; ORCiD logo [3];  [4]; ORCiD logo [4]; ORCiD logo [1];  [1];  [5];  [6]; ORCiD logo [7]; ORCiD logo [1];  [8]; ORCiD logo [8];  [7];  [1]; ORCiD logo [3]; ORCiD logo [2] more »; ORCiD logo [1] « less
  1. Univ. of Wisconsin, Madison, WI (United States)
  2. Sungkyunkwan Univ., Suwon (Republic of Korea)
  3. Pennsylvania State Univ., University Park, PA (United States)
  4. Korea Inst. of Materials Science, Changwon (Korea, Republic of)
  5. Argonne National Lab. (ANL), Argonne, IL (United States); Dublin City Univ. (Ireland)
  6. Argonne National Lab. (ANL), Argonne, IL (United States)
  7. Univ. of Nebraska, Lincoln, NE (United States)
  8. Boise State Univ., ID (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; US Department of the Navy, Office of Naval Research (ONR); National Science Foundation (NSF)
OSTI Identifier:
1483924
Alternate Identifier(s):
OSTI ID: 1505612
Grant/Contract Number:  
AC02-06CH11357; FG02-06ER46327
Resource Type:
Journal Article: Published Article
Journal Name:
Science
Additional Journal Information:
Journal Volume: 362; Journal Issue: 6418; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Lee, D., Chung, B., Shi, Y., Kim, G. -Y., Campbell, N., Xue, F., Song, K., Choi, S. -Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J. -W., Paudel, T. R., Kang, J. -H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., and Eom, C. B.. Isostructural metal-insulator transition in VO2. United States: N. p., 2018. Web. doi:10.1126/science.aam9189.
Lee, D., Chung, B., Shi, Y., Kim, G. -Y., Campbell, N., Xue, F., Song, K., Choi, S. -Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J. -W., Paudel, T. R., Kang, J. -H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., & Eom, C. B.. Isostructural metal-insulator transition in VO2. United States. doi:10.1126/science.aam9189.
Lee, D., Chung, B., Shi, Y., Kim, G. -Y., Campbell, N., Xue, F., Song, K., Choi, S. -Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J. -W., Paudel, T. R., Kang, J. -H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., and Eom, C. B.. Fri . "Isostructural metal-insulator transition in VO2". United States. doi:10.1126/science.aam9189.
@article{osti_1483924,
title = {Isostructural metal-insulator transition in VO2},
author = {Lee, D. and Chung, B. and Shi, Y. and Kim, G. -Y. and Campbell, N. and Xue, F. and Song, K. and Choi, S. -Y. and Podkaminer, J. P. and Kim, T. H. and Ryan, P. J. and Kim, J. -W. and Paudel, T. R. and Kang, J. -H. and Spinuzzi, J. W. and Tenne, D. A. and Tsymbal, E. Y. and Rzchowski, M. S. and Chen, L. Q. and Lee, J. and Eom, C. B.},
abstractNote = {The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.},
doi = {10.1126/science.aam9189},
journal = {Science},
issn = {0036-8075},
number = 6418,
volume = 362,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1126/science.aam9189

Save / Share:

Works referenced in this record:

Projector augmented-wave method
journal, December 1994


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method
journal, January 1997

  • Anisimov, Vladimir I.; Aryasetiawan, F.; Lichtenstein, A. I.
  • Journal of Physics: Condensed Matter, Vol. 9, Issue 4, p. 767-808
  • DOI: 10.1088/0953-8984/9/4/002

Metal-insulator transitions
journal, October 1998

  • Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
  • Reviews of Modern Physics, Vol. 70, Issue 4, p. 1039-1263
  • DOI: 10.1103/RevModPhys.70.1039

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996