skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical Characterization of the SPT-3G Camera

Abstract

The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220GHz) with 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.

Authors:
ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); Gordon and Betty Moore Foundation; Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Institute for Advanced Research (CIFAR); USDOE Office of Science - Office of High Energy Physics
OSTI Identifier:
1481273
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Journal of Low Temperature Physics
Additional Journal Information:
Journal Volume: 193; Journal Issue: 3-4; Journal ID: ISSN 0022-2291
Publisher:
Plenum Press
Country of Publication:
United States
Language:
English
Subject:
Fourier transform spectrometer; Frequency bands; Optical efficiency; beam; cosmic microwave background; polarization; time constant; transition-edge sensor

Citation Formats

Pan, Z., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Carter, F. W., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Ding, J., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., and Young, M. R. Optical Characterization of the SPT-3G Camera. United States: N. p., 2018. Web. doi:10.1007/s10909-018-1935-y.
Pan, Z., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Carter, F. W., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Ding, J., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., & Young, M. R. Optical Characterization of the SPT-3G Camera. United States. doi:10.1007/s10909-018-1935-y.
Pan, Z., Ade, P. A. R., Ahmed, Z., Anderson, A. J., Austermann, J. E., Avva, J. S., Thakur, R. Basu, Bender, A. N., Benson, B. A., Carlstrom, J. E., Carter, F. W., Cecil, T., Chang, C. L., Cliche, J. F., Cukierman, A., Denison, E. V., de Haan, T., Ding, J., Dobbs, M. A., Dutcher, D., Everett, W., Foster, A., Gannon, R. N., Gilbert, A., Groh, J. C., Halverson, N. W., Harke-Hosemann, A. H., Harrington, N. L., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Huang, N., Irwin, K. D., Jeong, O. B., Jonas, M., Khaire, T., Kofman, A. M., Korman, M., Kubik, D., Kuhlmann, S., Kuo, C. L., Lee, A. T., Lowitz, A. E., Meyer, S. S., Michalik, D., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Noble, G. I., Novosad, V., Padin, S., Pearson, J., Posada, C. M., Rahlin, A., Ruhl, J. E., Saunders, L. J., Sayre, J. T., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J. A., Stark, A. A., Story, K. T., Suzuki, A., Tang, Q. Y., Thompson, K. L., Tucker, C., Vale, L. R., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Yefremenko, V., Yoon, K. W., and Young, M. R. Fri . "Optical Characterization of the SPT-3G Camera". United States. doi:10.1007/s10909-018-1935-y.
@article{osti_1481273,
title = {Optical Characterization of the SPT-3G Camera},
author = {Pan, Z. and Ade, P. A. R. and Ahmed, Z. and Anderson, A. J. and Austermann, J. E. and Avva, J. S. and Thakur, R. Basu and Bender, A. N. and Benson, B. A. and Carlstrom, J. E. and Carter, F. W. and Cecil, T. and Chang, C. L. and Cliche, J. F. and Cukierman, A. and Denison, E. V. and de Haan, T. and Ding, J. and Dobbs, M. A. and Dutcher, D. and Everett, W. and Foster, A. and Gannon, R. N. and Gilbert, A. and Groh, J. C. and Halverson, N. W. and Harke-Hosemann, A. H. and Harrington, N. L. and Henning, J. W. and Hilton, G. C. and Holzapfel, W. L. and Huang, N. and Irwin, K. D. and Jeong, O. B. and Jonas, M. and Khaire, T. and Kofman, A. M. and Korman, M. and Kubik, D. and Kuhlmann, S. and Kuo, C. L. and Lee, A. T. and Lowitz, A. E. and Meyer, S. S. and Michalik, D. and Montgomery, J. and Nadolski, A. and Natoli, T. and Nguyen, H. and Noble, G. I. and Novosad, V. and Padin, S. and Pearson, J. and Posada, C. M. and Rahlin, A. and Ruhl, J. E. and Saunders, L. J. and Sayre, J. T. and Shirley, I. and Shirokoff, E. and Smecher, G. and Sobrin, J. A. and Stark, A. A. and Story, K. T. and Suzuki, A. and Tang, Q. Y. and Thompson, K. L. and Tucker, C. and Vale, L. R. and Vanderlinde, K. and Vieira, J. D. and Wang, G. and Whitehorn, N. and Yefremenko, V. and Yoon, K. W. and Young, M. R.},
abstractNote = {The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220GHz) with 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.},
doi = {10.1007/s10909-018-1935-y},
journal = {Journal of Low Temperature Physics},
issn = {0022-2291},
number = 3-4,
volume = 193,
place = {United States},
year = {2018},
month = {5}
}