skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrokinetic flow of an aqueous electrolyte in amorphous silica nanotubes

Abstract

We study the pressure-driven flow of aqueous NaCl in amorphous silica nanotubes using nonequilibrium molecular dynamics simulations featuring both polarizable and non-polarizable molecular models.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [3]
  1. Department of Chemistry, University of Helsinki, Helsinki, Finland
  2. Department of Chemistry, Queen's University, Kingston, Canada
  3. Department of Chemistry, Virginia Commonwealth University, Richmond, USA
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1481028
Grant/Contract Number:  
SC 0004406
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics Journal Volume: 20 Journal Issue: 44; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Daub, Christopher D., Cann, Natalie M., Bratko, D., and Luzar, Alenka. Electrokinetic flow of an aqueous electrolyte in amorphous silica nanotubes. United Kingdom: N. p., 2018. Web. doi:10.1039/C8CP03791D.
Daub, Christopher D., Cann, Natalie M., Bratko, D., & Luzar, Alenka. Electrokinetic flow of an aqueous electrolyte in amorphous silica nanotubes. United Kingdom. doi:10.1039/C8CP03791D.
Daub, Christopher D., Cann, Natalie M., Bratko, D., and Luzar, Alenka. Wed . "Electrokinetic flow of an aqueous electrolyte in amorphous silica nanotubes". United Kingdom. doi:10.1039/C8CP03791D.
@article{osti_1481028,
title = {Electrokinetic flow of an aqueous electrolyte in amorphous silica nanotubes},
author = {Daub, Christopher D. and Cann, Natalie M. and Bratko, D. and Luzar, Alenka},
abstractNote = {We study the pressure-driven flow of aqueous NaCl in amorphous silica nanotubes using nonequilibrium molecular dynamics simulations featuring both polarizable and non-polarizable molecular models.},
doi = {10.1039/C8CP03791D},
journal = {Physical Chemistry Chemical Physics},
number = 44,
volume = 20,
place = {United Kingdom},
year = {Wed Nov 14 00:00:00 EST 2018},
month = {Wed Nov 14 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 12, 2019
Publisher's Accepted Manuscript

Save / Share: