skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strategies for accelerating the adoption of materials informatics

Abstract

Abstract

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institute of Standards and Technology (NIST); National Science Foundation (NSF); USDOE Office of Science (SC)
OSTI Identifier:
1480313
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
MRS Bulletin
Additional Journal Information:
Journal Volume: 43; Journal Issue: 09; Journal ID: ISSN 0883-7694
Publisher:
Materials Research Society
Country of Publication:
United States
Language:
English

Citation Formats

Ward, Logan, Aykol, Muratahan, Blaiszik, Ben, Foster, Ian, Meredig, Bryce, Saal, James, and Suram, Santosh. Strategies for accelerating the adoption of materials informatics. United States: N. p., 2018. Web. doi:10.1557/mrs.2018.204.
Ward, Logan, Aykol, Muratahan, Blaiszik, Ben, Foster, Ian, Meredig, Bryce, Saal, James, & Suram, Santosh. Strategies for accelerating the adoption of materials informatics. United States. doi:10.1557/mrs.2018.204.
Ward, Logan, Aykol, Muratahan, Blaiszik, Ben, Foster, Ian, Meredig, Bryce, Saal, James, and Suram, Santosh. Sat . "Strategies for accelerating the adoption of materials informatics". United States. doi:10.1557/mrs.2018.204.
@article{osti_1480313,
title = {Strategies for accelerating the adoption of materials informatics},
author = {Ward, Logan and Aykol, Muratahan and Blaiszik, Ben and Foster, Ian and Meredig, Bryce and Saal, James and Suram, Santosh},
abstractNote = {Abstract},
doi = {10.1557/mrs.2018.204},
journal = {MRS Bulletin},
issn = {0883-7694},
number = 09,
volume = 43,
place = {United States},
year = {2018},
month = {9}
}

Works referenced in this record:

High-Dimensional Materials and Process Optimization Using Data-Driven Experimental Design with Well-Calibrated Uncertainty Estimates
journal, July 2017

  • Ling, Julia; Hutchinson, Maxwell; Antono, Erin
  • Integrating Materials and Manufacturing Innovation, Vol. 6, Issue 3
  • DOI: 10.1007/s40192-017-0098-z

Materials Data Infrastructure: A Case Study of the Citrination Platform to Examine Data Import, Storage, and Access
journal, June 2016


Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

UHCSDB: UltraHigh Carbon Steel Micrograph DataBase: Tools for Exploring Large Heterogeneous Microstructure Datasets
journal, May 2017

  • DeCost, Brian L.; Hecht, Matthew D.; Francis, Toby
  • Integrating Materials and Manufacturing Innovation, Vol. 6, Issue 2
  • DOI: 10.1007/s40192-017-0097-0

Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows
journal, November 2017


Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations
journal, July 2017


Dissolving the Periodic Table in Cubic Zirconia: Data Mining to Discover Chemical Trends
journal, March 2014

  • Meredig, Bryce; Wolverton, C.
  • Chemistry of Materials, Vol. 26, Issue 6
  • DOI: 10.1021/cm403727z

Materials selection in conceptual design
journal, June 1989


Mining Materials Design Rules from Data: The Example of Polymer Dielectrics
journal, October 2017


Quantum structural diagrams and high-T_{c} superconductivity
journal, February 1988


Big–deep–smart data in imaging for guiding materials design
journal, September 2015

  • Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4395

Remarks on the recent progress of Materials Genome Initiative
journal, November 2015


Preface: Some Advanced Techniques in Data Science
journal, March 2015


The Materials Commons: A Collaboration Platform and Information Repository for the Global Materials Community
journal, July 2016


Automated Search for New Thermoelectric Materials: The Case of LiZnSb
journal, September 2006

  • Madsen, Georg K. H.
  • Journal of the American Chemical Society, Vol. 128, Issue 37
  • DOI: 10.1021/ja062526a

The crystallographic information file (CIF): a new standard archive file for crystallography
journal, November 1991

  • Hall, S. R.; Allen, F. H.; Brown, I. D.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 47, Issue 6
  • DOI: 10.1107/S010876739101067X

AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

Crystallography Open Database – an open-access collection of crystal structures
journal, May 2009

  • Gražulis, Saulius; Chateigner, Daniel; Downs, Robert T.
  • Journal of Applied Crystallography, Vol. 42, Issue 4
  • DOI: 10.1107/S0021889809016690

Molecular Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical Forces
journal, March 2015


Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

First-principles study of the stability and electronic structure of metal hydrides
journal, October 2002


Informatics Infrastructure for the Materials Genome Initiative
journal, July 2016


Matrix- and tensor-based recommender systems for the discovery of currently unknown inorganic compounds
journal, January 2018


Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments
journal, April 2018


ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature
journal, October 2016

  • Swain, Matthew C.; Cole, Jacqueline M.
  • Journal of Chemical Information and Modeling, Vol. 56, Issue 10
  • DOI: 10.1021/acs.jcim.6b00207

Accelerated search for materials with targeted properties by adaptive design
journal, April 2016

  • Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11241

The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


Information-Theoretic Approach for the Discovery of Design Rules for Crystal Chemistry
journal, June 2012

  • Kong, Chang Sun; Luo, Wei; Arapan, Sergiu
  • Journal of Chemical Information and Modeling, Vol. 52, Issue 7
  • DOI: 10.1021/ci200628z

Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations
journal, May 2013

  • Gaultois, Michael W.; Sparks, Taylor D.; Borg, Christopher K. H.
  • Chemistry of Materials, Vol. 25, Issue 15
  • DOI: 10.1021/cm400893e

Exploration versus Exploitation in Global Atomistic Structure Optimization
journal, January 2018

  • Jørgensen, Mathias S.; Larsen, Uffe F.; Jacobsen, Karsten W.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 5
  • DOI: 10.1021/acs.jpca.8b00160

High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications
journal, July 2016


Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys
journal, September 2005


Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

The FAIR Guiding Principles for scientific data management and stewardship
journal, March 2016

  • Wilkinson, Mark D.; Dumontier, Michel; Aalbersberg, IJsbrand Jan
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.18

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases
journal, March 2016

  • Jain, Anubhav; Persson, Kristin A.; Ceder, Gerbrand
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4944683

Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion
journal, January 2017


AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012


Generating Information-Rich High-Throughput Experimental Materials Genomes using Functional Clustering via Multitree Genetic Programming and Information Theory
journal, March 2015

  • Suram, Santosh K.; Haber, Joel A.; Jin, Jian
  • ACS Combinatorial Science, Vol. 17, Issue 4
  • DOI: 10.1021/co5001579

Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies
journal, March 2017

  • Green, M. L.; Choi, C. L.; Hattrick-Simpers, J. R.
  • Applied Physics Reviews, Vol. 4, Issue 1
  • DOI: 10.1063/1.4977487

Adaptive Strategies for Materials Design using Uncertainties
journal, January 2016

  • Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19660

Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


Autonomy in materials research: a case study in carbon nanotube growth
journal, October 2016


Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V–Mn–Nb Oxide System
journal, December 2016


Atomistic calculations and materials informatics: A review
journal, June 2017


High-throughput computational design of cathode coatings for Li-ion batteries
journal, December 2016

  • Aykol, Muratahan; Kim, Soo; Hegde, Vinay I.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13779

Machine-learned and codified synthesis parameters of oxide materials
journal, September 2017


The Materials Data Facility: Data Services to Advance Materials Science Research
journal, July 2016


Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
journal, June 2010

  • Hautier, Geoffroy; Fischer, Christopher C.; Jain, Anubhav
  • Chemistry of Materials, Vol. 22, Issue 12
  • DOI: 10.1021/cm100795d

Structure maps for. Pseudobinary and ternary phases
journal, August 1988


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013