skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes

Abstract

Different climate drivers influence precipitation in different ways. Here we use radiative kernels to understand the influence of rapid adjustment processes on precipitation in climate models. Rapid adjustments are generally triggered by the initial heating or cooling of the atmosphere from an external climate driver. For precipitation changes, rapid adjustments due to changes in temperature, water vapor, and clouds are most important. In this study we have investigated five climate drivers (CO 2, CH 4, solar irradiance, black carbon, and sulfate aerosols). The fast precipitation responses to a doubling of CO 2 and a 10-fold increase in black carbon are found to be similar, despite very different instantaneous changes in the radiative cooling, individual rapid adjustments, and sensible heating. The model diversity in rapid adjustments is smaller for the experiment involving an increase in the solar irradiance compared to the other climate driver perturbations, and this is also seen in the precipitation changes.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6];  [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10];  [9]; ORCiD logo [3]; ORCiD logo [11]; ORCiD logo [12]; ORCiD logo [13] more »; ORCiD logo [14]; ORCiD logo [12] « less
  1. CICERO Center for International Climate Research Oslo Norway
  2. Rosenstiel School of Marine and Atmospheric ScienceUniversity of Miami Miami FL USA
  3. School of Earth and EnvironmentUniversity of Leeds Leeds UK
  4. Met Office Hadley Centre Exeter UK
  5. Institut Pierre‐Simon LaplaceCNRS/Sorbonne Université Paris France
  6. NASA Goddard Institute for Space Studies New York NY USA, Center for Climate Systems ResearchColumbia University New York NY USA
  7. Max‐Planck‐Institut für Meteorologie Hamburg Germany
  8. Department of PhysicsImperial College London London UK, Grantham Institute‐Climate Change and the EnvironmentImperial College London London UK
  9. Norwegian Meteorological Institute Oslo Norway
  10. NCAR/UCAR Boulder CO USA
  11. Nicholas School of the EnvironmentDuke University Durham NC USA
  12. Atmospheric, Oceanic &, Planetary Physics, Department of PhysicsUniversity of Oxford Oxford UK
  13. Research Institute for Applied MechanicsKyushu University Fukuoka Japan
  14. Department of PhysicsImperial College London London UK
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); Research Council of Norway; National Aeronautic and Space Administration (NASA); Natural Environment Research Council (NERC); GENCI (Grand Equipement National de Calcul Intensif); European Research Council (ERC); Alexander von Humboldt Foundation; National Institute for Environmental Studies; Environmental Restoration and Conservation Agency of Japan; Japan Society for the Promotion of Science (JSPS)
OSTI Identifier:
1480137
Alternate Identifier(s):
OSTI ID: 1480139; OSTI ID: 1611846
Grant/Contract Number:  
SC0012549; NAPEX (229778); 17-EARTH17R-015; NE/N006038/1; 724602; NE/K500872/1; JP15H01728
Resource Type:
Journal Article: Published Article
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Name: Geophysical Research Letters Journal Volume: 45 Journal Issue: 20; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; geology; precipitation changes; climate drivers; radiative kernels; PDRMIP

Citation Formats

Myhre, G., Kramer, R. J., Smith, C. J., Hodnebrog, Ø., Forster, P., Soden, B. J., Samset, B. H., Stjern, C. W., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Kasoar, M., Kirkevåg, A., Lamarque, J. ‐F., Olivié, D., Richardson, T., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson‐Parris, D. Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes. United States: N. p., 2018. Web. doi:10.1029/2018GL079474.
Myhre, G., Kramer, R. J., Smith, C. J., Hodnebrog, Ø., Forster, P., Soden, B. J., Samset, B. H., Stjern, C. W., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Kasoar, M., Kirkevåg, A., Lamarque, J. ‐F., Olivié, D., Richardson, T., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., & Watson‐Parris, D. Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes. United States. doi:10.1029/2018GL079474.
Myhre, G., Kramer, R. J., Smith, C. J., Hodnebrog, Ø., Forster, P., Soden, B. J., Samset, B. H., Stjern, C. W., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Kasoar, M., Kirkevåg, A., Lamarque, J. ‐F., Olivié, D., Richardson, T., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson‐Parris, D. Tue . "Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes". United States. doi:10.1029/2018GL079474.
@article{osti_1480137,
title = {Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes},
author = {Myhre, G. and Kramer, R. J. and Smith, C. J. and Hodnebrog, Ø. and Forster, P. and Soden, B. J. and Samset, B. H. and Stjern, C. W. and Andrews, T. and Boucher, O. and Faluvegi, G. and Fläschner, D. and Kasoar, M. and Kirkevåg, A. and Lamarque, J. ‐F. and Olivié, D. and Richardson, T. and Shindell, D. and Stier, P. and Takemura, T. and Voulgarakis, A. and Watson‐Parris, D.},
abstractNote = {Different climate drivers influence precipitation in different ways. Here we use radiative kernels to understand the influence of rapid adjustment processes on precipitation in climate models. Rapid adjustments are generally triggered by the initial heating or cooling of the atmosphere from an external climate driver. For precipitation changes, rapid adjustments due to changes in temperature, water vapor, and clouds are most important. In this study we have investigated five climate drivers (CO2, CH4, solar irradiance, black carbon, and sulfate aerosols). The fast precipitation responses to a doubling of CO2 and a 10-fold increase in black carbon are found to be similar, despite very different instantaneous changes in the radiative cooling, individual rapid adjustments, and sensible heating. The model diversity in rapid adjustments is smaller for the experiment involving an increase in the solar irradiance compared to the other climate driver perturbations, and this is also seen in the precipitation changes.},
doi = {10.1029/2018GL079474},
journal = {Geophysical Research Letters},
issn = {0094-8276},
number = 20,
volume = 45,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1029/2018GL079474

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results
journal, June 2017

  • Myhre, G.; Forster, P. M.; Samset, B. H.
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 6
  • DOI: 10.1175/BAMS-D-16-0019.1

Radiative feedbacks on global precipitation
journal, April 2010


Drivers of Precipitation Change: An Energetic Understanding
journal, December 2018


Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM
journal, January 2007

  • Lohmann, U.; Stier, P.; Hoose, C.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 13
  • DOI: 10.5194/acp-7-3425-2007

An assessment of precipitation adjustment and feedback computation methods: PRECIPITATION ADJUSTMENT AND FEEDBACK
journal, October 2016

  • Richardson, T. B.; Samset, B. H.; Andrews, T.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 19
  • DOI: 10.1002/2016JD025625

Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations: Rapid Adjustments Cause Weak BC Response
journal, November 2017

  • Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 21
  • DOI: 10.1002/2017JD027326

A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments
journal, August 1997

  • Colman, R. A.; McAvaney, B. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D16
  • DOI: 10.1029/97JD00206

Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study
journal, March 2016

  • Samset, B. H.; Myhre, G.; Forster, P. M.
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2016GL068064

Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO 2 : FORCING AND FEEDBACK IN THE MPI-ESM-LR
journal, October 2013

  • Block, K.; Mauritsen, T.
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 4
  • DOI: 10.1002/jame.20041

Energetic Constraints on Precipitation Under Climate Change
journal, November 2011

  • O’Gorman, Paul A.; Allan, Richard P.; Byrne, Michael P.
  • Surveys in Geophysics, Vol. 33, Issue 3-4
  • DOI: 10.1007/s10712-011-9159-6

Precipitation, radiative forcing and global temperature change: PRECIPITATION AND RADIATIVE FORCING
journal, July 2010

  • Andrews, Timothy; Forster, Piers M.; Boucher, Olivier
  • Geophysical Research Letters, Vol. 37, Issue 14
  • DOI: 10.1029/2010GL043991

Understanding Rapid Adjustments to Diverse Forcing Agents
journal, November 2018

  • Smith, C. J.; Kramer, R. J.; Myhre, G.
  • Geophysical Research Letters, Vol. 45, Issue 21
  • DOI: 10.1029/2018GL079826

Adjustments in the Forcing-Feedback Framework for Understanding Climate Change
journal, February 2015

  • Sherwood, Steven C.; Bony, Sandrine; Boucher, Olivier
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 2
  • DOI: 10.1175/BAMS-D-13-00167.1

Recommendations for diagnosing effective radiative forcing from climate models for CMIP6: RECOMMENDED EFFECTIVE RADIATIVE FORCING
journal, October 2016

  • Forster, Piers M.; Richardson, Thomas; Maycock, Amanda C.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 20
  • DOI: 10.1002/2016JD025320

Quantifying Climate Feedbacks Using Radiative Kernels
journal, July 2008

  • Soden, Brian J.; Held, Isaac M.; Colman, Robert
  • Journal of Climate, Vol. 21, Issue 14
  • DOI: 10.1175/2007JCLI2110.1

The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations
journal, January 2012

  • Zhang, K.; O'Donnell, D.; Kazil, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 19
  • DOI: 10.5194/acp-12-8911-2012

Connections Between Clouds, Radiation, and Midlatitude Dynamics: a Review
journal, April 2015


Robustness and uncertainties in the new CMIP5 climate model projections
journal, October 2012


On the Use of Cloud Forcing to Estimate Cloud Feedback
journal, October 2004


Constraints on future changes in climate and the hydrologic cycle
journal, September 2002


The Atmospheric Energy Constraint on Global-Mean Precipitation Change
journal, January 2014


Understanding the Intermodel Spread in Global-Mean Hydrological Sensitivity
journal, January 2016

  • Fläschner, Dagmar; Mauritsen, Thorsten; Stevens, Bjorn
  • Journal of Climate, Vol. 29, Issue 2
  • DOI: 10.1175/JCLI-D-15-0351.1

Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5
journal, January 2018

  • Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.
  • Earth System Science Data, Vol. 10, Issue 1
  • DOI: 10.5194/essd-10-317-2018

Understanding the Rapid Precipitation Response to CO 2 and Aerosol Forcing on a Regional Scale
journal, January 2016

  • Richardson, Thomas B.; Forster, Piers M.; Andrews, Timothy
  • Journal of Climate, Vol. 29, Issue 2
  • DOI: 10.1175/JCLI-D-15-0174.1

Sensible heat has significantly affected the global hydrological cycle over the historical period
journal, May 2018


Two opposing effects of absorbing aerosols on global-mean precipitation: EFFECTS OF ABSORBING AEROSOLS ON PRECIPITATION
journal, July 2010

  • Ming, Yi; Ramaswamy, V.; Persad, Geeta
  • Geophysical Research Letters, Vol. 37, Issue 13
  • DOI: 10.1029/2010GL042895

Radiative forcing due to changes in ozone and methane caused by the transport sector
journal, January 2011