skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface Passivation and Carrier Collection in {110}, {100} and Circular Si Microwire Solar Cells

Abstract

Surface recombination is a major bottleneck for realizing highly efficient micro/nanostructure solar cells. Parametric studies of the influence of Si microwire (SiMW) surface-facet orientation (rectangular with flat-facets, {110}, {100} and circular), with a fixed height of 10 µm, diameter (D = 1.5–9.5 µm), and sidewall spacing (S = 2.5–8.5 µm), and mesh-grid density (1–16 mm -2) on recombination and carrier collection in SiMW solar cells with radial p-n junctions are reported. An effective surface passivation layer composed of thin thermally grown silicon dioxide (SiO 2) and silicon nitride (SiN x) layers is employed. For a fixed D of 1.5 µm, tight SiMW spacing results in improved short-circuit current density (J sc = 30.1 mA cm -2) and sparse arrays result in open-circuit voltages (V oc = 0.552 V) that are similar to those of control Si planar cells. For a fixed S, smaller D results in better light trapping at shorter wavelengths and higher J sc while larger D exhibits better light trapping at larger wavelengths and a higher V oc. With a mesh-grid electrode the power conversion efficiency increases to 15.3%. Finally, these results provide insights on the recombination mechanisms in SiMW solar cells and provide general design principlesmore » for optimizing their performance.« less

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [2];  [2]; ORCiD logo [3]
  1. Univ. of California, San Diego, CA (United States). Integrated Electronics and Biointerfaces Lab. Dept. of Electrical and Computer Engineering
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Univ. of California, San Diego, CA (United States). Integrated Electronics and Biointerfaces Lab. Dept. of Electrical and Computer Engineering. Materials Science and Engineering Program. Dept. of NanoEngineering
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1480007
Alternate Identifier(s):
OSTI ID: 1479520
Report Number(s):
LA-UR-18-28250
Journal ID: ISSN 1614-6832
Grant/Contract Number:  
AC52-06NA25396; ECCS-1351980
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 33; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; Material Science; microwire facet; Si; solar cell; surface passivation; surface recombination

Citation Formats

Ro, Yun Goo, Chen, Renjie, Liu, Ren, Li, Nan, Williamson, Theodore, Yoo, Jinkyoung, Sim, Sangwan, Prasankumar, Rohit P., and Dayeh, Shadi A. Surface Passivation and Carrier Collection in {110}, {100} and Circular Si Microwire Solar Cells. United States: N. p., 2018. Web. doi:10.1002/aenm.201802154.
Ro, Yun Goo, Chen, Renjie, Liu, Ren, Li, Nan, Williamson, Theodore, Yoo, Jinkyoung, Sim, Sangwan, Prasankumar, Rohit P., & Dayeh, Shadi A. Surface Passivation and Carrier Collection in {110}, {100} and Circular Si Microwire Solar Cells. United States. doi:10.1002/aenm.201802154.
Ro, Yun Goo, Chen, Renjie, Liu, Ren, Li, Nan, Williamson, Theodore, Yoo, Jinkyoung, Sim, Sangwan, Prasankumar, Rohit P., and Dayeh, Shadi A. Wed . "Surface Passivation and Carrier Collection in {110}, {100} and Circular Si Microwire Solar Cells". United States. doi:10.1002/aenm.201802154. https://www.osti.gov/servlets/purl/1480007.
@article{osti_1480007,
title = {Surface Passivation and Carrier Collection in {110}, {100} and Circular Si Microwire Solar Cells},
author = {Ro, Yun Goo and Chen, Renjie and Liu, Ren and Li, Nan and Williamson, Theodore and Yoo, Jinkyoung and Sim, Sangwan and Prasankumar, Rohit P. and Dayeh, Shadi A.},
abstractNote = {Surface recombination is a major bottleneck for realizing highly efficient micro/nanostructure solar cells. Parametric studies of the influence of Si microwire (SiMW) surface-facet orientation (rectangular with flat-facets, {110}, {100} and circular), with a fixed height of 10 µm, diameter (D = 1.5–9.5 µm), and sidewall spacing (S = 2.5–8.5 µm), and mesh-grid density (1–16 mm-2) on recombination and carrier collection in SiMW solar cells with radial p-n junctions are reported. An effective surface passivation layer composed of thin thermally grown silicon dioxide (SiO2) and silicon nitride (SiNx) layers is employed. For a fixed D of 1.5 µm, tight SiMW spacing results in improved short-circuit current density (Jsc = 30.1 mA cm-2) and sparse arrays result in open-circuit voltages (Voc = 0.552 V) that are similar to those of control Si planar cells. For a fixed S, smaller D results in better light trapping at shorter wavelengths and higher Jsc while larger D exhibits better light trapping at larger wavelengths and a higher Voc. With a mesh-grid electrode the power conversion efficiency increases to 15.3%. Finally, these results provide insights on the recombination mechanisms in SiMW solar cells and provide general design principles for optimizing their performance.},
doi = {10.1002/aenm.201802154},
journal = {Advanced Energy Materials},
issn = {1614-6832},
number = 33,
volume = 8,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: (a)-(e) Schematic illustration of the fabrication process (not to scale). (a) Ni dry-etch mask patterning. (b) ICP-RIE etching of SiMWs. (c) SOD phosphorus doping resulting in radial $p$-$n$ junction. (d) Passivation of SiMW surface with SiO2/SiNx layer. (e) Mesa etching and patterned top metal electrode deposition; blanket bottommore » metal contact electrode deposition. (f) Top view optical microscopic image of a SiMW solar cell. Scale bar is 500 μm. (g)-(i) 45- degree view SEM images of 10 μm-tall SiMWs with different facets, {110} (width=1.5 μm, $S$=1 μm), {100} (width=1.5 μm, $S$=1 μm) and circular ($D$=1.5 μm, $S$=1 μm), respectively. Scale bars are 5 μm. (j) Cross-sectional SEM image of 10 μm-tall SiMWs. Scale bar is 5 μm.« less

Save / Share:

Works referenced in this record:

Si Radial p-i-n Junction Photovoltaic Arrays with Built-In Light Concentrators
journal, May 2015


Nanophotonic light trapping in solar cells
journal, November 2012

  • Mokkapati, S.; Catchpole, K. R.
  • Journal of Applied Physics, Vol. 112, Issue 10
  • DOI: 10.1063/1.4747795

Printable Nanostructured Silicon Solar Cells for High-Performance, Large-Area Flexible Photovoltaics
journal, October 2014

  • Lee, Sung-Min; Biswas, Roshni; Li, Weigu
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn503884z

Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths
journal, May 2010

  • Yoon, Heayoung P.; Yuwen, Yu A.; Kendrick, Chito E.
  • Applied Physics Letters, Vol. 96, Issue 21
  • DOI: 10.1063/1.3432449

The Contribution of Planes, Vertices, and Edges to Recombination at Pyramidally Textured Surfaces
journal, July 2011


Si microwire-array solar cells
journal, January 2010

  • Putnam, Morgan C.; Boettcher, Shannon W.; Kelzenberg, Michael D.
  • Energy & Environmental Science, Vol. 3, Issue 8
  • DOI: 10.1039/c0ee00014k

Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells
journal, October 2013


15.7% Efficient 10-μm-Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures
journal, February 2015

  • Branham, Matthew S.; Hsu, Wei-Chun; Yerci, Selcuk
  • Advanced Materials, Vol. 27, Issue 13
  • DOI: 10.1002/adma.201405511

Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires
journal, January 2018

  • Hwang, Inchan; Um, Han-Don; Kim, Byeong-Su
  • Energy & Environmental Science, Vol. 11, Issue 3
  • DOI: 10.1039/C7EE03340K

Obtaining Uniform Dopant Distributions in VLS-Grown Si Nanowires
journal, January 2011

  • Koren, E.; Hyun, J. K.; Givan, U.
  • Nano Letters, Vol. 11, Issue 1
  • DOI: 10.1021/nl103363c

All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency
journal, December 2013

  • Jeong, Sangmoo; McGehee, Michael D.; Cui, Yi
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3950

Electronic states at the interface between indium tin oxide and silicon
journal, October 2011

  • Malmbekk, H.; Vines, L.; Monakhov, E. V.
  • Journal of Applied Physics, Vol. 110, Issue 7
  • DOI: 10.1063/1.3643002

Record fast thermal processing of 17.5  efficient silicon solar cells
journal, June 2002

  • Peters, Stefan; Ballif, Christophe; Borchert, Dietmar
  • Semiconductor Science and Technology, Vol. 17, Issue 7
  • DOI: 10.1088/0268-1242/17/7/307

Realization of high performance silicon nanowire based solar cells with large size
journal, May 2013


Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications
journal, October 2007

  • Hu, Lu; Chen, Gang
  • Nano Letters, Vol. 7, Issue 11, p. 3249-3252
  • DOI: 10.1021/nl071018b

Photoinjected hot‐electron damage in silicon point‐contact solar cells
journal, December 1989

  • Gruenbaum, P. E.; King, R. R.; Swanson, R. M.
  • Journal of Applied Physics, Vol. 66, Issue 12
  • DOI: 10.1063/1.343592

Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO 2 /plasma SiN stacks
journal, February 2001

  • Schmidt, Jan; Kerr, Mark; Cuevas, Andrés
  • Semiconductor Science and Technology, Vol. 16, Issue 3
  • DOI: 10.1088/0268-1242/16/3/308

Electrical and optical properties of Si microwire solar cells
journal, May 2017


Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications
journal, February 2010

  • Kelzenberg, Michael D.; Boettcher, Shannon W.; Petykiewicz, Jan A.
  • Nature Materials, Vol. 9, Issue 3, p. 239-244
  • DOI: 10.1038/nmat2635

Hybrid Si Microwire and Planar Solar Cells: Passivation and Characterization
journal, July 2011

  • Kim, Dong Rip; Lee, Chi Hwan; Rao, Pratap Mahesh
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl2009636

Geometrical optimization and contact configuration in radial pn junction silicon nanorod and microrod solar cells: Geometric optimization and contacts of nanowire solar cells
journal, June 2012

  • Voigt, F.; Stelzner, T.; Christiansen, S.
  • Progress in Photovoltaics: Research and Applications, Vol. 21, Issue 8
  • DOI: 10.1002/pip.2231

13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode
journal, July 2015

  • Park, Kwang-Tae; Kim, Han-Jung; Park, Min-Joon
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12093

Heterojunction Silicon Microwire Solar Cells
journal, February 2012

  • Gharghi, Majid; Fathi, Ehsanollah; Kante, Boubacar
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl3033813

Effects of Pillar Height and Junction Depth on the Performance of Radially Doped Silicon Pillar Arrays for Solar Energy Applications
journal, December 2015

  • Elbersen, Rick; Vijselaar, Wouter; Tiggelaar, Roald M.
  • Advanced Energy Materials, Vol. 6, Issue 3
  • DOI: 10.1002/aenm.201501728

Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics: Characteristics of large-scale nanohole arrays
journal, October 2012

  • Chen, Ting-Gang; Yu, Peichen; Chen, Shih-Wei
  • Progress in Photovoltaics: Research and Applications, Vol. 22, Issue 4
  • DOI: 10.1002/pip.2291

Effect of the short collection length in silicon microscale wire solar cells
journal, May 2013

  • Kim, Hyunyub; Kim, Joondong; Lee, Eunsongyi
  • Applied Physics Letters, Vol. 102, Issue 19
  • DOI: 10.1063/1.4804581

Alignment of mask patterns to crystal orientation
journal, May 1996


Direct Imaging of Free Carrier and Trap Carrier Motion in Silicon Nanowires by Spatially-Separated Femtosecond Pump–Probe Microscopy
journal, February 2013

  • Gabriel, Michelle M.; Kirschbrown, Justin R.; Christesen, Joseph D.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl400265b

High performance wire-array silicon solar cells
journal, August 2010

  • Gunawan, O.; Wang, K.; Fallahazad, B.
  • Progress in Photovoltaics: Research and Applications, Vol. 19, Issue 3
  • DOI: 10.1002/pip.1027

Experimental Study of Design Parameters in Silicon Micropillar Array Solar Cells Produced by Soft Lithography and Metal-Assisted Chemical Etching
journal, April 2012


Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO 2 Layer
journal, May 2013

  • Seo, Kwanyong; Yu, Young J.; Duane, Peter
  • ACS Nano, Vol. 7, Issue 6
  • DOI: 10.1021/nn401776x

Microgrid Electrode for Si Microwire Solar Cells with a Fill Factor of Over 80%
journal, August 2015

  • Um, Han-Don; Hwang, Inchan; Kim, Namwoo
  • Advanced Materials Interfaces, Vol. 2, Issue 16
  • DOI: 10.1002/admi.201500347

Mapping Carrier Diffusion in Single Silicon Core–Shell Nanowires with Ultrafast Optical Microscopy
journal, February 2012

  • Seo, M. A.; Yoo, J.; Dayeh, S. A.
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303502f

17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures
journal, January 2016

  • Lee, Kangmin; Hwang, Inchan; Kim, Namwoo
  • Nanoscale, Vol. 8, Issue 30
  • DOI: 10.1039/C6NR04611H

Photo-Electrical Characterization of Silicon Micropillar Arrays with Radial p/n Junctions Containing Passivation and Anti-Reflection Coatings
journal, December 2016

  • Vijselaar, Wouter; Elbersen, Rick; Tiggelaar, Roald M.
  • Advanced Energy Materials, Vol. 7, Issue 7
  • DOI: 10.1002/aenm.201601497

Effect of the pn junction engineering on Si microwire-array solar cells
journal, May 2012

  • Dalmau Mallorquí, A.; Epple, F. M.; Fan, D.
  • physica status solidi (a), Vol. 209, Issue 8
  • DOI: 10.1002/pssa.201228165

Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells
journal, January 2013


Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells
journal, June 2005

  • Kayes, Brendan M.; Atwater, Harry A.; Lewis, Nathan S.
  • Journal of Applied Physics, Vol. 97, Issue 11, Article No. 114302
  • DOI: 10.1063/1.1901835

Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings
journal, February 2012

  • Wang, Ken Xingze; Yu, Zongfu; Liu, Victor
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl204550q

Analysis of surface recombination in nanowire array solar cells
journal, January 2012

  • Yu, Shuqing; Roemer, Friedhard; Witzigmann, Bernd
  • Journal of Photonics for Energy, Vol. 2, Issue 1
  • DOI: 10.1117/1.JPE.2.028002

Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays
journal, December 2008

  • Zhu, Jia; Yu, Zongfu; Burkhard, George F.
  • Nano Letters, Vol. 9, Issue 1, p. 279-282
  • DOI: 10.1021/nl802886y

Epitaxial growth of radial Si p-i-n junctions for photovoltaic applications
journal, March 2013

  • Yoo, Jinkyoung; Dayeh, Shadi A.; Tang, Wei
  • Applied Physics Letters, Vol. 102, Issue 9
  • DOI: 10.1063/1.4794541

Characterizing the Influence of Crystal Orientation on Surface Recombination in Silicon Wafers
journal, March 2016


An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures
journal, September 2012

  • Oh, Jihun; Yuan, Hao-Chih; Branz, Howard M.
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.166