skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modelling the Tucana III stream - a close passage with the LMC

Abstract

In this work, we present results of the first dynamical stream fits to the recently discovered Tucana III stream. These fits assume a fixed Milky Way potential and give proper motion predictions, which can be tested with the upcoming Gaia Data Release 2 (DR2). These fits reveal that Tucana III is on an eccentric orbit around the Milky Way and, more interestingly, that Tucana III passed within 15 kpc of the Large Magellanic Cloud (LMC) approximately 75 Myr ago. Given this close passage, we fit the Tucana III stream in the combined presence of the Milky Way and the LMC. We find that the predicted proper motions depend on the assumed mass of the LMC and that the LMC can induce a substantial proper motion perpendicular to the stream track. A detection of this misalignment will directly probe the extent of the LMC’s influence on our Galaxy, and has implications for nearly all methods which attempt to constraint the Milky Way potential. Lastly, such a measurement will be possible with the upcoming Gaia DR2, allowing for a measurement of the LMC’s mass.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [5];  [6];  [7];  [8];  [9];  [10];  [11]; ORCiD logo [10];  [12];  [13];  [10];  [11];  [14];  [8];  [15];  [8] more »;  [8]; ORCiD logo [16];  [17];  [18];  [8];  [19];  [20];  [21];  [22];  [23];  [20];  [24];  [25];  [18];  [26];  [27];  [8];  [2];  [28];  [29];  [27]; ORCiD logo [19];  [21];  [20];  [8];  [30];  [31];  [32];  [33];  [26];  [20]; ORCiD logo [23];  [21];  [34];  [20];  [35];  [25];  [36];  [8];  [37];  [25];  [38];  [11]; ORCiD logo [39];  [40]; ORCiD logo [41];  [42];  [43];  [8];  [11] « less
  1. Department of Physics, University of Surrey, Guildford GU2 7XH, UK; Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  2. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  3. McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  4. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA
  5. Department of Physics, University of Surrey, Guildford GU2 7XH, UK
  6. LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA
  7. Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801, USA; Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  8. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  9. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  10. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  11. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  12. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  13. Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA
  14. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA; Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  15. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK; Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
  16. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
  17. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
  18. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
  19. Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  20. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  21. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  22. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona) Spain
  23. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  24. Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
  25. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  26. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  27. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  28. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
  29. Institut d’Estudis Espacials de Catalunya (IEEC), 08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain
  30. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK; Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  31. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  32. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  33. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  34. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain; Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona) Spain
  35. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  36. Instituto de Física, UFRGS, Caixa Postal 15051, Porto Alegre, RS - 91501-970, Brazil; Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  37. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  38. School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
  39. Brandeis University, Physics Department, 415 South Street, Waltham MA 02453
  40. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP, Brazil; Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  41. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
  42. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  43. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21); USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1479691
Grant/Contract Number:  
AC05-00OR22725; AC02-07CH11359
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 481; Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Galaxy: evolution; Galaxy: kinematics and dynamics; galaxies: dwarf

Citation Formats

Erkal, D., Li, T. S., Koposov, S. E., Belokurov, V., Balbinot, E., Bechtol, K., Buncher, B., Drlica-Wagner, A., Kuehn, K., Marshall, J. L., Martínez-Vázquez, C. E., Pace, A. B., Shipp, N., Simon, J. D., Stringer, K. M., Vivas, A. K., Wechsler, R. H., Yanny, B., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Doel, P., Eifler, T. F., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Krause, E., Maia, M. A. G., March, M., Menanteau, F., Miquel, R., Ogando, R. L. C., Plazas, A. A., Sanchez, E., Santiago, B., Scarpine, V., Schindler, R., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., and Walker, A. R.. Modelling the Tucana III stream - a close passage with the LMC. United States: N. p., 2018. Web. doi:10.1093/mnras/sty2518.
Erkal, D., Li, T. S., Koposov, S. E., Belokurov, V., Balbinot, E., Bechtol, K., Buncher, B., Drlica-Wagner, A., Kuehn, K., Marshall, J. L., Martínez-Vázquez, C. E., Pace, A. B., Shipp, N., Simon, J. D., Stringer, K. M., Vivas, A. K., Wechsler, R. H., Yanny, B., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Doel, P., Eifler, T. F., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Krause, E., Maia, M. A. G., March, M., Menanteau, F., Miquel, R., Ogando, R. L. C., Plazas, A. A., Sanchez, E., Santiago, B., Scarpine, V., Schindler, R., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., & Walker, A. R.. Modelling the Tucana III stream - a close passage with the LMC. United States. doi:10.1093/mnras/sty2518.
Erkal, D., Li, T. S., Koposov, S. E., Belokurov, V., Balbinot, E., Bechtol, K., Buncher, B., Drlica-Wagner, A., Kuehn, K., Marshall, J. L., Martínez-Vázquez, C. E., Pace, A. B., Shipp, N., Simon, J. D., Stringer, K. M., Vivas, A. K., Wechsler, R. H., Yanny, B., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Doel, P., Eifler, T. F., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Krause, E., Maia, M. A. G., March, M., Menanteau, F., Miquel, R., Ogando, R. L. C., Plazas, A. A., Sanchez, E., Santiago, B., Scarpine, V., Schindler, R., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., and Walker, A. R.. Tue . "Modelling the Tucana III stream - a close passage with the LMC". United States. doi:10.1093/mnras/sty2518.
@article{osti_1479691,
title = {Modelling the Tucana III stream - a close passage with the LMC},
author = {Erkal, D. and Li, T. S. and Koposov, S. E. and Belokurov, V. and Balbinot, E. and Bechtol, K. and Buncher, B. and Drlica-Wagner, A. and Kuehn, K. and Marshall, J. L. and Martínez-Vázquez, C. E. and Pace, A. B. and Shipp, N. and Simon, J. D. and Stringer, K. M. and Vivas, A. K. and Wechsler, R. H. and Yanny, B. and Abdalla, F. B. and Allam, S. and Annis, J. and Avila, S. and Bertin, E. and Brooks, D. and Buckley-Geer, E. and Burke, D. L. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and D’Andrea, C. B. and da Costa, L. N. and Davis, C. and De Vicente, J. and Doel, P. and Eifler, T. F. and Evrard, A. E. and Flaugher, B. and Frieman, J. and García-Bellido, J. and Gaztanaga, E. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hartley, W. G. and Hollowood, D. L. and Honscheid, K. and James, D. J. and Krause, E. and Maia, M. A. G. and March, M. and Menanteau, F. and Miquel, R. and Ogando, R. L. C. and Plazas, A. A. and Sanchez, E. and Santiago, B. and Scarpine, V. and Schindler, R. and Sevilla-Noarbe, I. and Smith, M. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Tucker, D. L. and Walker, A. R.},
abstractNote = {In this work, we present results of the first dynamical stream fits to the recently discovered Tucana III stream. These fits assume a fixed Milky Way potential and give proper motion predictions, which can be tested with the upcoming Gaia Data Release 2 (DR2). These fits reveal that Tucana III is on an eccentric orbit around the Milky Way and, more interestingly, that Tucana III passed within 15 kpc of the Large Magellanic Cloud (LMC) approximately 75 Myr ago. Given this close passage, we fit the Tucana III stream in the combined presence of the Milky Way and the LMC. We find that the predicted proper motions depend on the assumed mass of the LMC and that the LMC can induce a substantial proper motion perpendicular to the stream track. A detection of this misalignment will directly probe the extent of the LMC’s influence on our Galaxy, and has implications for nearly all methods which attempt to constraint the Milky Way potential. Lastly, such a measurement will be possible with the upcoming Gaia DR2, allowing for a measurement of the LMC’s mass.},
doi = {10.1093/mnras/sty2518},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 481,
place = {United States},
year = {Tue Dec 11 00:00:00 EST 2018},
month = {Tue Dec 11 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 11, 2019
Publisher's Version of Record

Save / Share: