skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Technical Report: Low-Cost Manufacturing of High Performance deNOx Catalysts

Technical Report ·
OSTI ID:1479665

This Small Business Technology Transfer Phase I project has developed scalable, low light-off temperature, hydrothermally stable catalysts for removal of nitrogen oxide (NOx) contaminants from lean-diesel emissions (the process commonly known as “deNOx”), using hydrocarbons as the reductant. We developed the synthesis of a new form of deNOx catalyst originally developed at Argonne National Laboratory. This comprised a method to prepare more uniform catalytic materials by a proven scalable technology for the hydrocarbon catalyzed selective catalytic reduction (HC-SCR) of NOx. The program was able to minimize the use of expensive rare earth metal oxides in the catalysts for a deNOx strategy that already minimizes emissions, storage, transportation, and corrosion concerns associated with SCR using ammonia or urea. Forge Nano has already demonstrated a high-throughput, low-cost method of applying atomic layer deposition (ALD) coatings to particles, allowing this precision coating technique to be implemented at very low $/kg for Li-ion batteries. This program builds off that recently developed low-cost ALD technique to apply finely tuned coatings onto zeolite particles to prepare drop-in ready materials suitable for use as deNOx catalysts without sacrificing cost or performance. This research addresses the following barriers to support the commercial adoption of this deNOx catalyst strategy: Performance: We demonstrated the viability of scalable ALD oxide overcoats applied to metal exchanged zeolites for the catalytic reduction of NOx. These materials produce comparable light off temperature to the uncoated catalyst, and better activity and hydrothermal stability compared to the sol-gel route. Cost: An independent assessment of the total value proposition for ALD coated deNOx catalyst upgrading was performed to delineate cost saving opportunities with this ALD methodology.

Research Organization:
Forge Nano, Louisville, CO (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
SC0017676
OSTI ID:
1479665
Type / Phase:
STTR (Phase I)
Report Number(s):
DOE-FN-7676; 7205311837
Country of Publication:
United States
Language:
English

Similar Records

Highly Robust Low-PGM MEAs Based upon Composite Supports _ Final Report
Technical Report · Tue Nov 12 00:00:00 EST 2019 · OSTI ID:1479665

Design and Synthesis of Highly-Dispersed WO3 Catalyst with Highly Effective NH3–SCR Activity for NOx Abatement
Journal Article · Wed Nov 13 00:00:00 EST 2019 · ACS Catalysis · OSTI ID:1479665

Scalable Nano-Scaffold SOFC Anode Architecture Enabling Direct Hydrocarbon Utilization
Technical Report · Wed Feb 16 00:00:00 EST 2022 · OSTI ID:1479665