skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity

Abstract

Hydrogen-rich hydrides attract great attention due to recent theoretical (1) and then experimental discovery of record high-temperature superconductivity in H 3S [T c= 203 K at 155 GPa (2)]. Here we search for stable uranium hydrides at pressures up to 500 GPa using ab initio evolutionary crystal structure prediction. Chemistry of the U-H system turned out to be extremely rich, with 14 new compounds, including hydrogen-rich UH 5, UH 6, U 2H 13, UH 7, UH 8, U 2H 17, and UH 9. Their crystal structures are based on either common face-centered cubic or hexagonal close-packed uranium sublattice and unusual H 8cubic clusters. Our high-pressure experiments at 1 to 103 GPa confirm the predicted UH 7, UH 8, and three different phases of UH 5, raising confidence about predictions of the other phases. Many of the newly predicted phases are expected to be high-temperature superconductors. The highest-T csuperconductor is UH 7, predicted to be thermodynamically stable at pressures above 22 GPa (withT c= 44 to 54 K), and this phase remains dynamically stable upon decompression to zero pressure (where it hasT c= 57 to 66 K).


Citation Formats

Kruglov, Ivan A., Kvashnin, Alexander G., Goncharov, Alexander F., Oganov, Artem R., Lobanov, Sergey S., Holtgrewe, Nicholas, Jiang, Shuqing, Prakapenka, Vitali B., Greenberg, Eran, and Yanilkin, Alexey V. Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity. United States: N. p., 2018. Web. doi:10.1126/sciadv.aat9776.
Kruglov, Ivan A., Kvashnin, Alexander G., Goncharov, Alexander F., Oganov, Artem R., Lobanov, Sergey S., Holtgrewe, Nicholas, Jiang, Shuqing, Prakapenka, Vitali B., Greenberg, Eran, & Yanilkin, Alexey V. Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity. United States. doi:10.1126/sciadv.aat9776.
Kruglov, Ivan A., Kvashnin, Alexander G., Goncharov, Alexander F., Oganov, Artem R., Lobanov, Sergey S., Holtgrewe, Nicholas, Jiang, Shuqing, Prakapenka, Vitali B., Greenberg, Eran, and Yanilkin, Alexey V. Mon . "Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity". United States. doi:10.1126/sciadv.aat9776.
@article{osti_1479026,
title = {Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity},
author = {Kruglov, Ivan A. and Kvashnin, Alexander G. and Goncharov, Alexander F. and Oganov, Artem R. and Lobanov, Sergey S. and Holtgrewe, Nicholas and Jiang, Shuqing and Prakapenka, Vitali B. and Greenberg, Eran and Yanilkin, Alexey V.},
abstractNote = {Hydrogen-rich hydrides attract great attention due to recent theoretical (1) and then experimental discovery of record high-temperature superconductivity in H3S [Tc= 203 K at 155 GPa (2)]. Here we search for stable uranium hydrides at pressures up to 500 GPa using ab initio evolutionary crystal structure prediction. Chemistry of the U-H system turned out to be extremely rich, with 14 new compounds, including hydrogen-rich UH5, UH6, U2H13, UH7, UH8, U2H17, and UH9. Their crystal structures are based on either common face-centered cubic or hexagonal close-packed uranium sublattice and unusual H8cubic clusters. Our high-pressure experiments at 1 to 103 GPa confirm the predicted UH7, UH8, and three different phases of UH5, raising confidence about predictions of the other phases. Many of the newly predicted phases are expected to be high-temperature superconductors. The highest-Tcsuperconductor is UH7, predicted to be thermodynamically stable at pressures above 22 GPa (withTc= 44 to 54 K), and this phase remains dynamically stable upon decompression to zero pressure (where it hasTc= 57 to 66 K).},
doi = {10.1126/sciadv.aat9776},
journal = {Science Advances},
issn = {2375-2548},
number = 10,
volume = 4,
place = {United States},
year = {2018},
month = {10}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Actinium Hydrides AcH 10 , AcH 12 , and AcH 16 as High-Temperature Conventional Superconductors
journal, March 2018

  • Semenok, Dmitrii V.; Kvashnin, Alexander G.; Kruglov, Ivan A.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 8
  • DOI: 10.1021/acs.jpclett.8b00615

Transition temperature of strong-coupled superconductors reanalyzed
journal, August 1975


Structure of phase III of solid hydrogen
journal, May 2007

  • Pickard, Chris J.; Needs, Richard J.
  • Nature Physics, Vol. 3, Issue 7
  • DOI: 10.1038/nphys625

Critical temperature of metallic hydrogen at a pressure of 500 GPa
journal, October 2016


Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Separation of hydrogen isotopes with uranium hydride
journal, January 1982


New developments in evolutionary structure prediction algorithm USPEX
journal, April 2013

  • Lyakhov, Andriy O.; Oganov, Artem R.; Stokes, Harold T.
  • Computer Physics Communications, Vol. 184, Issue 4
  • DOI: 10.1016/j.cpc.2012.12.009

Behavior of actinide dioxides under pressure:  U O 2 and Th O 2
journal, July 2004


X-ray diffraction in the pulsed laser heated diamond anvil cell
journal, November 2010

  • Goncharov, Alexander F.; Prakapenka, Vitali B.; Struzhkin, Viktor V.
  • Review of Scientific Instruments, Vol. 81, Issue 11
  • DOI: 10.1063/1.3499358

Coexistence of superconductivity and ferromagnetism in URhGe
journal, October 2001

  • Aoki, Dai; Huxley, Andrew; Ressouche, Eric
  • Nature, Vol. 413, Issue 6856
  • DOI: 10.1038/35098048

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium
journal, September 2008


Experimental and Theoretical Evidence for the Formation of Several Uranium Hydride Molecules
journal, February 1997

  • Souter, Philip F.; Kushto, Gary P.; Andrews, Lester
  • Journal of the American Chemical Society, Vol. 119, Issue 7
  • DOI: 10.1021/ja9630809

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First principles phonon calculations in materials science
journal, November 2015


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


The Structure of Uranium Hydride and Deuteride 1
journal, July 1947

  • Rundle, R. E.
  • Journal of the American Chemical Society, Vol. 69, Issue 7
  • DOI: 10.1021/ja01199a043

The Hydrogen Positions in Uranium Hydride by Neutron Diffraction 1
journal, September 1951

  • Rundle, R. E.
  • Journal of the American Chemical Society, Vol. 73, Issue 9
  • DOI: 10.1021/ja01153a035

The electron-phonon interaction and the physical properties of metals
journal, April 1997


Ferromagnetism and Superconductivity in Uranium Compounds
journal, January 2012

  • Aoki, Dai; Flouquet, Jacques
  • Journal of the Physical Society of Japan, Vol. 81, Issue 1
  • DOI: 10.1143/JPSJ.81.011003

Uranium at high pressure from first principles
journal, September 2011


Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity
journal, November 2014

  • Duan, Defang; Liu, Yunxian; Tian, Fubo
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06968

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Structural behavior of α-uranium with pressures to 100 GPa
journal, April 2003


How Evolutionary Crystal Structure Prediction Works—and Why
journal, March 2011

  • Oganov, Artem R.; Lyakhov, Andriy O.; Valle, Mario
  • Accounts of Chemical Research, Vol. 44, Issue 3
  • DOI: 10.1021/ar1001318

The Formation of Uranium Hydride 1
journal, October 1947

  • Burke, Joseph E.; Smith, Cyril Stanley
  • Journal of the American Chemical Society, Vol. 69, Issue 10
  • DOI: 10.1021/ja01202a073

Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
journal, June 2006

  • Oganov, Artem R.; Glass, Colin W.
  • The Journal of Chemical Physics, Vol. 124, Issue 24
  • DOI: 10.1063/1.2210932

Superconductivity on the border of itinerant-electron ferromagnetism in UGe2
journal, August 2000

  • Saxena, S. S.; Agarwal, P.; Ahilan, K.
  • Nature, Vol. 406, Issue 6796
  • DOI: 10.1038/35020500

Kinetics of the reaction between water and uranium hydride prepared under conditions relevant to uranium storage
journal, February 2017


Pyrophoric behaviour of uranium hydride and uranium powders
journal, January 2010


A New Form of Uranium Hydride 1
journal, January 1954

  • Mulford, R. N. R.; Ellinger, F. H.; Zachariasen, W. H.
  • Journal of the American Chemical Society, Vol. 76, Issue 1
  • DOI: 10.1021/ja01630a094