skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Relativistic-electron-driven magnetic reconnection in the laboratory

Abstract

Magnetic reconnection is a fundamental process occurring in many plasma systems. Magnetic field lines break and reconfigure in to a lower energy state, converting released magnetic field energy into plasma kinetic energy. Around some of the universe’s most energetic objects, such as gamma ray burst or active galactic nuclei, where the magnetic field energy exceeds the plasma rest mass energy, the most extreme magnetic reconnection in the relativistic regime is theorized. The pre- sented experiments and three-dimensional particle-in-cell modeling recreate in the laboratory the scaled plasma conditions necessary to access the relativistic electron regime and therefore approach conditions around these distant, inaccessible objects. High-power, ultrashort laser pulses focused to high-intensity (I > 2.5 × 1018 Wcm-2) on solid targets produces relativistic temperature electrons within the focal volume. The hot electrons are largely confined to the target surface and form a ra- dial surface current that generates a huge, expanding azimuthal magnetic field. Focusing two laser pulses in close proximity on the target surface leads to oppositely directed magnetic fields being driven together. The fast electron motion due to the magnetic reconnection is inferred using an ex- perimental x-ray imaging technique. The x-ray images enable the measurement of the reconnection layermore » dimensions and temporal duration. The reconnection rates implied from the aspect ratio of the reconnection layer, δ/L ≈ 0.3, was found to be consistent over a range of experimental pulse durations (40 fs–20 ps) and agreed with the modeling. Further experimental evidence for magnetic reconnection is the formation of a nonthermal electron population shown by the modeling to be accelerated in the reconnection layer.« less

Authors:
 [1];  [2];  [3];  [1];  [4];  [2];  [1];  [5];  [1];  [4];  [4];  [2];  [1];  [1];  [6];  [1];  [6];  [6];  [1];  [4] more »;  [1];  [1];  [1] « less
  1. Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science
  2. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  3. Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. General Atomics, San Diego, CA (United States)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  6. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1478756
Alternate Identifier(s):
OSTI ID: 1478695; OSTI ID: 1510301; OSTI ID: 1529182
Report Number(s):
LLNL-JRNL-760956
Journal ID: ISSN 2470-0045; PLEEE8
Grant/Contract Number:  
NA0002727; AC52-07NA27344; 1339893
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 98; Journal Issue: 4; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Raymond, A. E., Dong, C. F., McKelvey, A., Zulick, C., Alexander, N., Bhattacharjee, A., Campbell, P. T., Chen, H., Chvykov, V., Del Rio, E., Fitzsimmons, P., Fox, W., Hou, B., Maksimchuk, A., Mileham, C., Nees, J., Nilson, P. M., Stoeckl, C., Thomas, A. G. R., Wei, M. S., Yanovsky, V., Krushelnick, K., and Willingale, L. Relativistic-electron-driven magnetic reconnection in the laboratory. United States: N. p., 2018. Web. doi:10.1103/PhysRevE.98.043207.
Raymond, A. E., Dong, C. F., McKelvey, A., Zulick, C., Alexander, N., Bhattacharjee, A., Campbell, P. T., Chen, H., Chvykov, V., Del Rio, E., Fitzsimmons, P., Fox, W., Hou, B., Maksimchuk, A., Mileham, C., Nees, J., Nilson, P. M., Stoeckl, C., Thomas, A. G. R., Wei, M. S., Yanovsky, V., Krushelnick, K., & Willingale, L. Relativistic-electron-driven magnetic reconnection in the laboratory. United States. doi:10.1103/PhysRevE.98.043207.
Raymond, A. E., Dong, C. F., McKelvey, A., Zulick, C., Alexander, N., Bhattacharjee, A., Campbell, P. T., Chen, H., Chvykov, V., Del Rio, E., Fitzsimmons, P., Fox, W., Hou, B., Maksimchuk, A., Mileham, C., Nees, J., Nilson, P. M., Stoeckl, C., Thomas, A. G. R., Wei, M. S., Yanovsky, V., Krushelnick, K., and Willingale, L. Wed . "Relativistic-electron-driven magnetic reconnection in the laboratory". United States. doi:10.1103/PhysRevE.98.043207. https://www.osti.gov/servlets/purl/1478756.
@article{osti_1478756,
title = {Relativistic-electron-driven magnetic reconnection in the laboratory},
author = {Raymond, A. E. and Dong, C. F. and McKelvey, A. and Zulick, C. and Alexander, N. and Bhattacharjee, A. and Campbell, P. T. and Chen, H. and Chvykov, V. and Del Rio, E. and Fitzsimmons, P. and Fox, W. and Hou, B. and Maksimchuk, A. and Mileham, C. and Nees, J. and Nilson, P. M. and Stoeckl, C. and Thomas, A. G. R. and Wei, M. S. and Yanovsky, V. and Krushelnick, K. and Willingale, L.},
abstractNote = {Magnetic reconnection is a fundamental process occurring in many plasma systems. Magnetic field lines break and reconfigure in to a lower energy state, converting released magnetic field energy into plasma kinetic energy. Around some of the universe’s most energetic objects, such as gamma ray burst or active galactic nuclei, where the magnetic field energy exceeds the plasma rest mass energy, the most extreme magnetic reconnection in the relativistic regime is theorized. The pre- sented experiments and three-dimensional particle-in-cell modeling recreate in the laboratory the scaled plasma conditions necessary to access the relativistic electron regime and therefore approach conditions around these distant, inaccessible objects. High-power, ultrashort laser pulses focused to high-intensity (I > 2.5 × 1018 Wcm-2) on solid targets produces relativistic temperature electrons within the focal volume. The hot electrons are largely confined to the target surface and form a ra- dial surface current that generates a huge, expanding azimuthal magnetic field. Focusing two laser pulses in close proximity on the target surface leads to oppositely directed magnetic fields being driven together. The fast electron motion due to the magnetic reconnection is inferred using an ex- perimental x-ray imaging technique. The x-ray images enable the measurement of the reconnection layer dimensions and temporal duration. The reconnection rates implied from the aspect ratio of the reconnection layer, δ/L ≈ 0.3, was found to be consistent over a range of experimental pulse durations (40 fs–20 ps) and agreed with the modeling. Further experimental evidence for magnetic reconnection is the formation of a nonthermal electron population shown by the modeling to be accelerated in the reconnection layer.},
doi = {10.1103/PhysRevE.98.043207},
journal = {Physical Review E},
issn = {2470-0045},
number = 4,
volume = 98,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: A schematic of the experimental geometry for the Omega EP experiments (similar to the Hercules setup). The spherical crystal images x-rays from the front side of the target onto a detector. A typical $K$$α$ image is shown with the reconnection layer highlighted in the dashed box with ofmore » length ($L$) and width ($δ$) labeled. A physical picture of the interaction illustrates the two azimuthal magnetic fields expanding into the reconnection region where a target normal electric field accelerates the electrons into the dense target to generate the copper $K$$α$ emission in the midplane.« less

Save / Share:

Works referenced in this record:

Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas
journal, May 2012

  • Mondal, S.; Narayanan, V.; Ding, W. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 21
  • DOI: 10.1073/pnas.1200753109

Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking
journal, November 2015


Dynamics of Self-Generated, Large Amplitude Magnetic Fields Following High-Intensity Laser Matter Interaction
journal, November 2012


Bidirectional jet formation during driven magnetic reconnection in two-beam laser–plasma interactions
journal, September 2008

  • Nilson, P. M.; Willingale, L.; Kaluza, M. C.
  • Physics of Plasmas, Vol. 15, Issue 9
  • DOI: 10.1063/1.2966115

Proton deflectometry of a magnetic reconnection geometry
journal, April 2010

  • Willingale, L.; Nilson, P. M.; Kaluza, M. C.
  • Physics of Plasmas, Vol. 17, Issue 4
  • DOI: 10.1063/1.3377787

Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena
journal, April 2000

  • Ryutov, D. D.; Drake, R. P.; Remington, B. A.
  • The Astrophysical Journal Supplement Series, Vol. 127, Issue 2
  • DOI: 10.1086/313320

A model of gamma-ray bursts
journal, October 1994

  • Thompson, Christopher
  • Monthly Notices of the Royal Astronomical Society, Vol. 270, Issue 3
  • DOI: 10.1093/mnras/270.3.480

Plasmoid Ejection and Secondary Current Sheet Generation from Magnetic Reconnection in Laser-Plasma Interaction
journal, May 2012


Fast Magnetic Reconnection in Laser-Produced Plasma Bubbles
journal, May 2011


Relativistic magnetic reconnection in collisionless ion-electron plasmas explored with particle-in-cell simulations
journal, October 2014


Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition
journal, August 2007

  • Robinson, A. P. L.; Sherlock, M.
  • Physics of Plasmas, Vol. 14, Issue 8
  • DOI: 10.1063/1.2768317

Quantitative, Comprehensive, Analytical Model for Magnetic Reconnection in Hall Magnetohydrodynamics
journal, September 2008


Particle Acceleration in Relativistic Current Sheets
journal, May 2004


Magnetic reconnection with electron viscosity in electron magnetohydrodynamics
journal, March 2008


A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas
journal, February 2015

  • Rosenberg, M. J.; Li, C. K.; Fox, W.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7190

Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection
journal, October 2014


Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers
journal, May 1999


Fundamental physics and relativistic laboratory astrophysics with extreme power lasers
journal, January 2012


Absorption of ultra-intense laser pulses
journal, August 1992


Observation of Megagauss-Field Topology Changes due to Magnetic Reconnection in Laser-Produced Plasmas
journal, August 2007


Magnetic Reconnection in Plasma under Inertial Confinement Fusion Conditions Driven by Heat Flux Effects in Ohm’s Law
journal, March 2014


High resolution bremsstrahlung and fast electron characterization in ultrafast intense laser–solid interactions
journal, December 2013


Relativistic laser-matter interaction and relativistic laboratory astrophysics
journal, May 2009


Reconnection in a Striped Pulsar Wind
journal, January 2001

  • Lyubarsky, Y.; Kirk, J. G.
  • The Astrophysical Journal, Vol. 547, Issue 1
  • DOI: 10.1086/318354

Experimental Characterization of a Strongly Coupled Solid Density Plasma Generated in a Short-pulse Laser Target Interaction
journal, July 2005

  • Gregori, G.; Hansen, S. B.; Clarke, R.
  • Contributions to Plasma Physics, Vol. 45, Issue 3-4
  • DOI: 10.1002/ctpp.200510032

Magnetic reconnection in electron magnetohydrodynamics
journal, August 1992

  • Bulanov, S. V.; Pegoraro, F.; Sakharov, A. S.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 8
  • DOI: 10.1063/1.860467

Dense Electron-Positron Plasmas and Ultraintense γ rays from Laser-Irradiated Solids
journal, April 2012


Total-magnetic reconnection during a major disruption in a tokamak
journal, February 1991


Fast Advection of Magnetic Fields by Hot Electrons
journal, August 2010


Generalized Magnetofluid Connections in Relativistic Magnetohydrodynamics
journal, March 2015


A spherical crystal imager for OMEGA EP
journal, March 2012

  • Stoeckl, C.; Fiksel, G.; Guy, D.
  • Review of Scientific Instruments, Vol. 83, Issue 3
  • DOI: 10.1063/1.3693348

High-intensity laser-plasma interactions in the refluxing limit
journal, May 2008

  • Nilson, P. M.; Theobald, W.; Myatt, J.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2889449

Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab
journal, April 2018


Study of driven magnetic reconnection in a laboratory plasma
journal, May 1997

  • Yamada, Masaaki; Ji, Hantao; Hsu, Scott
  • Physics of Plasmas, Vol. 4, Issue 5
  • DOI: 10.1063/1.872336

Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers
journal, October 2010

  • Zhong, Jiayong; Li, Yutong; Wang, Xiaogang
  • Nature Physics, Vol. 6, Issue 12
  • DOI: 10.1038/nphys1790

Magnetic Reconnection and Plasma Dynamics in Two-Beam Laser-Solid Interactions
journal, December 2006


4.5- and 8-keV emission and absorption x-ray imaging using spherically bent quartz 203 and 211 crystals (invited)
journal, March 2003

  • Koch, J. A.; Aglitskiy, Y.; Brown, C.
  • Review of Scientific Instruments, Vol. 74, Issue 3, p. 2130-2135
  • DOI: 10.1063/1.1537448

Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection
journal, June 2006

  • Uzdensky, Dmitri A.; Kulsrud, Russell M.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2209627

Nonthermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas
journal, March 2016


Magnetic reconnection: from MHD to QED
journal, November 2016


ELI-Beamlines: development of next generation short-pulse laser systems
conference, May 2015

  • Rus, B.; Bakule, P.; Kramer, D.
  • SPIE Optics + Optoelectronics, SPIE Proceedings
  • DOI: 10.1117/12.2184996

Three-dimensional fast magnetic reconnection driven by relativistic ultraintense femtosecond lasers
journal, March 2014


Ultrafast Electron Radiography of Magnetic Fields in High-Intensity Laser-Solid Interactions
journal, January 2013


Characterization of single and colliding laser-produced plasma bubbles using Thomson scattering and proton radiography
journal, November 2012


Spectra from a Magnetic Reconnection–heated Corona in Active Galactic Nuclei
journal, April 2003

  • Liu, B. F.; Mineshige, S.; Ohsuga, K.
  • The Astrophysical Journal, Vol. 587, Issue 2
  • DOI: 10.1086/368282

Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes
journal, September 2014


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.