skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Systems and methods to maintain optimum stoichiometry for reactively sputtered films

Abstract

The present invention relates to systems and methods for preparing reactively sputtered films. The films are generally thin transition metal oxide (TMO) films having an optimum stoichiometry for any useful device (e.g., a sub-stoichiometric thin film for a memristor device). Described herein are systems, methods, and calibrations processes that employ rapid control of partial pressures to obtain the desired film.

Publication Date:
Research Org.:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1478528
Patent Number(s):
10,074,522
Application Number:
14/671,284
Assignee:
National Technology & Engineering Solutions of Sandia, LLC (Albuquerque, NM) SNL
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Mar 27
Country of Publication:
United States
Language:
English

Citation Formats

None. Systems and methods to maintain optimum stoichiometry for reactively sputtered films. United States: N. p., 2018. Web.
None. Systems and methods to maintain optimum stoichiometry for reactively sputtered films. United States.
None. Tue . "Systems and methods to maintain optimum stoichiometry for reactively sputtered films". United States. doi:. https://www.osti.gov/servlets/purl/1478528.
@article{osti_1478528,
title = {Systems and methods to maintain optimum stoichiometry for reactively sputtered films},
author = {None},
abstractNote = {The present invention relates to systems and methods for preparing reactively sputtered films. The films are generally thin transition metal oxide (TMO) films having an optimum stoichiometry for any useful device (e.g., a sub-stoichiometric thin film for a memristor device). Described herein are systems, methods, and calibrations processes that employ rapid control of partial pressures to obtain the desired film.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Sep 11 00:00:00 EDT 2018},
month = {Tue Sep 11 00:00:00 EDT 2018}
}

Patent:

Save / Share:

Works referenced in this record:

A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5?x/TaO2?x bilayer structures
journal, July 2011

  • Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo
  • Nature Materials, Vol. 10, Issue 8, p. 625-630
  • DOI: 10.1038/nmat3070

Isothermal Switching and Detailed Filament Evolution in Memristive Systems
journal, April 2014

  • Mickel, Patrick R.; Lohn, Andrew J.; James, Conrad D.
  • Advanced Materials, Vol. 26, Issue 26, p. 4486-4490
  • DOI: 10.1002/adma.201306182

Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges
journal, July 2009

  • Waser, Rainer; Dittmann, Regina; Staikov, Georgi
  • Advanced Materials, Vol. 21, Issue 25-26, p. 2632-2663
  • DOI: 10.1002/adma.200900375

Memristive devices for computing
journal, January 2013

  • Yang, J. Joshua; Strukov, Dmitri B.; Stewart, Duncan R.
  • Nature Nanotechnology, Vol. 8, Issue 1, p. 13-24
  • DOI: 10.1038/nnano.2012.240