skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: H 2 Oxidation Electrocatalysis Enabled by Metal-to-Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction

Abstract

Oxidation of H2 is used in the conversion of the chemical energy of the H-H bond into electricity. Electrocatalytic oxidation of H2 typically requires that one metal bind H2, heterolytically cleave the H2, and then undergo two oxidation and two deprotonation steps. We discovered that electrocatalytic oxidation of H2 is catalyzed by a cooperative system using Cp*Cr(CO)3H and [Fe(diphosphine)(CO)3]+. A key step of the proposed mechanism is a rarely observed metal-to-metal hydrogen atom transfer from the Cr-H complex to the Fe, forming a Fe-H bond that is deprotonated and then oxidized electrochemically. The “division of chemical labor” between Cr and Fe features a reaction of the Cr complex with H2, while the Fe complex reacts at the electrode. This cooperative catalysis system does not require that either metal heterolytically cleave H2, and thereby provides a very unusual example of a homolytic reaction being a key step in a molecular electrocatalytic process.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland WA 99352 USA
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1478363
Report Number(s):
PNNL-SA-131196
Journal ID: ISSN 1433-7851
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Volume: 57; Journal Issue: 41; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
oxidation, electrocatalysis, hydrogen

Citation Formats

Chambers, Geoffrey M., Wiedner, Eric S., and Bullock, R. Morris. H 2 Oxidation Electrocatalysis Enabled by Metal-to-Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. United States: N. p., 2018. Web. doi:10.1002/anie.201807510.
Chambers, Geoffrey M., Wiedner, Eric S., & Bullock, R. Morris. H 2 Oxidation Electrocatalysis Enabled by Metal-to-Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. United States. doi:10.1002/anie.201807510.
Chambers, Geoffrey M., Wiedner, Eric S., and Bullock, R. Morris. Wed . "H 2 Oxidation Electrocatalysis Enabled by Metal-to-Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction". United States. doi:10.1002/anie.201807510.
@article{osti_1478363,
title = {H 2 Oxidation Electrocatalysis Enabled by Metal-to-Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction},
author = {Chambers, Geoffrey M. and Wiedner, Eric S. and Bullock, R. Morris},
abstractNote = {Oxidation of H2 is used in the conversion of the chemical energy of the H-H bond into electricity. Electrocatalytic oxidation of H2 typically requires that one metal bind H2, heterolytically cleave the H2, and then undergo two oxidation and two deprotonation steps. We discovered that electrocatalytic oxidation of H2 is catalyzed by a cooperative system using Cp*Cr(CO)3H and [Fe(diphosphine)(CO)3]+. A key step of the proposed mechanism is a rarely observed metal-to-metal hydrogen atom transfer from the Cr-H complex to the Fe, forming a Fe-H bond that is deprotonated and then oxidized electrochemically. The “division of chemical labor” between Cr and Fe features a reaction of the Cr complex with H2, while the Fe complex reacts at the electrode. This cooperative catalysis system does not require that either metal heterolytically cleave H2, and thereby provides a very unusual example of a homolytic reaction being a key step in a molecular electrocatalytic process.},
doi = {10.1002/anie.201807510},
journal = {Angewandte Chemie (International Edition)},
issn = {1433-7851},
number = 41,
volume = 57,
place = {United States},
year = {2018},
month = {9}
}

Works referenced in this record:

Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays
journal, June 2015


Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins
journal, June 2016


Organometallic thermodynamics. Redox couples involving metal-metal bonds
journal, May 1992

  • Pugh, J. Richard; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 114, Issue 10
  • DOI: 10.1021/ja00036a030

Electricity from low-level H2 in still air ? an ultimate test for an oxygen tolerant hydrogenase
journal, January 2006

  • Vincent, Kylie A.; Cracknell, James A.; Clark, Jeremy R.
  • Chemical Communications, Issue 48
  • DOI: 10.1039/b614272a

Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 p K a Units:  Unification of Different Basicity Scales
journal, February 2005

  • Kaljurand, Ivari; Kütt, Agnes; Sooväli, Lilli
  • The Journal of Organic Chemistry, Vol. 70, Issue 3
  • DOI: 10.1021/jo048252w

Carbon-to-Metal Hydrogen Atom Transfer:  Direct Observation Using Time-Resolved Infrared Spectroscopy
journal, November 2005

  • Zhang, Jie; Grills, David C.; Huang, Kuo-Wei
  • Journal of the American Chemical Society, Vol. 127, Issue 45
  • DOI: 10.1021/ja0555724

Intrinsic barriers to atom transfer (abstraction) processes; self-exchange rates for Cp(CO)3M.bul. radical/Cp(CO)3M-X halogen couples
journal, December 1991

  • Song, Jeong Sup; Bullock, R. Morris; Creutz, Carol
  • Journal of the American Chemical Society, Vol. 113, Issue 26
  • DOI: 10.1021/ja00026a029

Electrons from hydrogen
journal, January 2009


Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling
journal, February 2014

  • Lewandowska-Andralojc, Anna; Grills, David C.; Zhang, Jie
  • Journal of the American Chemical Society, Vol. 136, Issue 9
  • DOI: 10.1021/ja4123076

Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase
journal, October 2011

  • Camara, James M.; Rauchfuss, Thomas B.
  • Nature Chemistry, Vol. 4, Issue 1
  • DOI: 10.1038/nchem.1180

[NiFe]Hydrogenase from Citrobacter sp. S-77 Surpasses Platinum as an Electrode for H 2 Oxidation Reaction
journal, June 2014

  • Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka
  • Angewandte Chemie International Edition, Vol. 53, Issue 34
  • DOI: 10.1002/anie.201404701

Arginine-Containing Ligands Enhance H 2 Oxidation Catalyst Performance
journal, May 2014

  • Dutta, Arnab; Roberts, John A. S.; Shaw, Wendy J.
  • Angewandte Chemie International Edition, Vol. 53, Issue 25
  • DOI: 10.1002/anie.201402304

The rate and mechanism of oxidative addition of H2 to the Cr(CO)3C5Me5 radical—generation of a model for reaction of H2 with the Co(CO)4 radical
journal, July 1999


An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen
journal, February 2013

  • Liu, Tianbiao; DuBois, Daniel L.; Bullock, R. Morris
  • Nature Chemistry, Vol. 5, Issue 3
  • DOI: 10.1038/nchem.1571

One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide
journal, June 2017


Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen
journal, October 2015


Mechanism of the low-energy photochemical disproportionation reactions of bis(.eta.5-cyclopentadienyl)dimolybdenum hexacarbonyl [(.eta.5-C5H5)2Mo2(CO)6]
journal, September 1983

  • Stiegman, Albert E.; Stieglitz, Marc; Tyler, David R.
  • Journal of the American Chemical Society, Vol. 105, Issue 19
  • DOI: 10.1021/ja00357a012

Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere
journal, June 2013

  • Yang, Jenny Y.; Smith, Stuart E.; Liu, Tianbiao
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja400705a

Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties in the Oxidation of Molecular Dihydrogen
journal, December 2016

  • Yuki, Masahiro; Sakata, Ken; Kikuchi, Shoma
  • Chemistry - A European Journal, Vol. 23, Issue 5
  • DOI: 10.1002/chem.201604974

Hydrogen Spillover. Facts and Fiction
journal, February 2012


Radicals: Reactive Intermediates with Translational Potential
journal, September 2016

  • Yan, Ming; Lo, Julian C.; Edwards, Jacob T.
  • Journal of the American Chemical Society, Vol. 138, Issue 39
  • DOI: 10.1021/jacs.6b08856

Arginine-Containing Ligands Enhance H 2 Oxidation Catalyst Performance
journal, May 2014

  • Dutta, Arnab; Roberts, John A. S.; Shaw, Wendy J.
  • Angewandte Chemie, Vol. 126, Issue 25
  • DOI: 10.1002/ange.201402304

Seventeen-electron metal-centered radicals
journal, November 1988


Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile
journal, June 2012

  • Roberts, John A. S.; Bullock, R. Morris
  • Inorganic Chemistry, Vol. 52, Issue 7
  • DOI: 10.1021/ic302461q

H2 and O2 activation by [NiFe]hydrogenases – Insights from model complexes
journal, March 2017


Kinetics and Mechanism of the Hydrogenation of the CpCr(CO) 3 /[CpCr(CO) 3 ] 2 Equilibrium to CpCr(CO) 3 H
journal, May 2014

  • Norton, Jack R.; Spataru, Tudor; Camaioni, Donald M.
  • Organometallics, Vol. 33, Issue 10
  • DOI: 10.1021/om4012399

A direct comparison of the rates of degenerate transfer of electrons, protons, and hydrogen atoms between metal complexes
journal, June 1993

  • Protasiewicz, John D.; Theopold, Klaus H.
  • Journal of the American Chemical Society, Vol. 115, Issue 13
  • DOI: 10.1021/ja00066a025

Measurement of Fast Dimerization Rates by Cyclic Voltammetry: Comparison of the 17e Radicals (.eta.5-C5R5)Cr(CO)3 (R = H, CH3) at Low Temperatures
journal, November 1994

  • Richards, Thomas C.; Geiger, William E.; Baird, Michael C.
  • Organometallics, Vol. 13, Issue 11
  • DOI: 10.1021/om00023a060

[NiFe]Hydrogenase from Citrobacter sp. S-77 Surpasses Platinum as an Electrode for H 2 Oxidation Reaction
journal, June 2014

  • Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka
  • Angewandte Chemie, Vol. 126, Issue 34
  • DOI: 10.1002/ange.201404701

Oxidation of Dihydrogen by Iridium Complexes of Redox-Active Ligands
journal, April 2010

  • Ringenberg, Mark R.; Nilges, Mark J.; Rauchfuss, Thomas B.
  • Organometallics, Vol. 29, Issue 8
  • DOI: 10.1021/om9010593

Radical Isomerization and Cycloisomerization Initiated by H• Transfer
journal, June 2016

  • Li, Gang; Kuo, Jonathan L.; Han, Arthur
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b03509

Molecular Catalysis of H 2 Evolution: Diagnosing Heterolytic versus Homolytic Pathways
journal, September 2014

  • Costentin, Cyrille; Dridi, Hachem; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja505845t

Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators
journal, June 2016


Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 3. Thermodynamic acidity of common mononuclear carbonyl hydrides
journal, April 1986

  • Moore, Eric J.; Sullivan, Jeffrey M.; Norton, Jack R.
  • Journal of the American Chemical Society, Vol. 108, Issue 9
  • DOI: 10.1021/ja00269a022

Heat of reaction of the Cr(CO)3(C5Me5) radical with hydrogen and related reactions. Relative and absolute bond strengths in the complexes H-Cr(CO)2(L)(C5R5)
journal, July 1990

  • Kiss, Gabor; Zhang, Kai; Mukerjee, Shakti L.
  • Journal of the American Chemical Society, Vol. 112, Issue 14
  • DOI: 10.1021/ja00170a050

Cooperative Electrocatalytic O 2 Reduction Involving Co(salophen) with p- Hydroquinone as an Electron–Proton Transfer Mediator
journal, December 2017

  • Anson, Colin W.; Stahl, Shannon S.
  • Journal of the American Chemical Society, Vol. 139, Issue 51
  • DOI: 10.1021/jacs.7b11362

One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide
journal, June 2017

  • Ogo, Seiji; Mori, Yuki; Ando, Tatsuya
  • Angewandte Chemie International Edition, Vol. 56, Issue 33
  • DOI: 10.1002/anie.201704864

Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems.
journal, April 1964

  • Nicholson, R. S.; Shain, Irving
  • Analytical Chemistry, Vol. 36, Issue 4, p. 706-723
  • DOI: 10.1021/ac60210a007

Thiolate-Bridged Dinuclear Ruthenium and Iron Complexes as Robust and Efficient Catalysts toward Oxidation of Molecular Dihydrogen in Protic Solvents
journal, March 2015

  • Yuki, Masahiro; Sakata, Ken; Hirao, Yoshifumi
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/jacs.5b00584

Hydrogen atom transfer reactions of transition-metal hydrides. Kinetics and mechanism of the hydrogenation of .alpha.-cyclopropylstyrene by metal carbonyl hydrides
journal, September 1990

  • Bullock, R. Morris; Samsel, Edward G.
  • Journal of the American Chemical Society, Vol. 112, Issue 19
  • DOI: 10.1021/ja00175a024

Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis
journal, July 2008

  • Cracknell, James A.; Vincent, Kylie A.; Armstrong, Fraser A.
  • Chemical Reviews, Vol. 108, Issue 7
  • DOI: 10.1021/cr0680639

Equilibrium between [CpCr(CO)3]2 and CpCr(CO)3. Thermodynamics of chromium-chromium single-bond cleavage
journal, January 1988

  • McLain, Stephan J.
  • Journal of the American Chemical Society, Vol. 110, Issue 2
  • DOI: 10.1021/ja00210a079

Hydrogenases
journal, March 2014

  • Lubitz, Wolfgang; Ogata, Hideaki; Rüdiger, Olaf
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr4005814

Relative rates of hydrogen atom (H.cntdot.) transfer from transition-metal hydrides to trityl radicals
journal, June 1991

  • Eisenberg, David C.; Lawrie, Christophe J. C.; Moody, Anne E.
  • Journal of the American Chemical Society, Vol. 113, Issue 13
  • DOI: 10.1021/ja00013a026

Hydrogen Activation by Biomimetic [NiFe]-Hydrogenase Model Containing Protected Cyanide Cofactors
journal, July 2013

  • Manor, Brian C.; Rauchfuss, Thomas B.
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja404580r

Aqua, Alcohol, and Acetonitrile Adducts of Tris(perfluorophenyl)borane:  Evaluation of Brønsted Acidity and Ligand Lability with Experimental and Computational Methods
journal, November 2000

  • Bergquist, Catherine; Bridgewater, Brian M.; Harlan, C. Jeff
  • Journal of the American Chemical Society, Vol. 122, Issue 43
  • DOI: 10.1021/ja001915g