skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chapter 8: Metabolic Engineering of Methanotrophic Bacteria for Industrial Biomanufacturing

Abstract

CH4 offers a promising, high-volume petroleum replacement for fuel and chemical bioprocesses. Recent advances in gas recovery technologies have facilitated access to previously inaccessible natural gas reserves, while biogas generated from anaerobic digestion of waste streams offers a versatile, renewable CH4 source. Importantly, CH4 is also the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. However, the gaseous state of CH4 makes for a lack of compatibility with current transportation and industrial manufacturing infrastructure, limiting its utilization as a transportation fuel and intermediate in biochemical processes. Resurgent interest in CH4 upgrading has pushed microbial conversion of CH4 to fuels and value-added chemicals to the forefront of industrial bioprocessing. CH4 bioconversion offers both CH4 valorization and GHG emission reduction potential and importantly offers a scalable, modular, and selective approach to CH4 utilization compared to conventional physical and chemical conversion strategies. However, as noted above, advances in CH4 biocatalysis have been constrained by limited genetic tractability of natural CH4-consuming microbes. In this chapter, we review recent advances in methanotrophic genetic and genomic tool development and metabolic engineering.

Authors:
ORCiD logo [1];  [1]
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1478177
Report Number(s):
NREL/CH-5100-72610
DOE Contract Number:  
AC36-08GO28308
Resource Type:
Book
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; methane; gas recovery; biogas; bioprocessing

Citation Formats

Guarnieri, Michael T, and Henard, Calvin A. Chapter 8: Metabolic Engineering of Methanotrophic Bacteria for Industrial Biomanufacturing. United States: N. p., 2018. Web. doi:10.1007/978-3-319-74866-5_8.
Guarnieri, Michael T, & Henard, Calvin A. Chapter 8: Metabolic Engineering of Methanotrophic Bacteria for Industrial Biomanufacturing. United States. doi:10.1007/978-3-319-74866-5_8.
Guarnieri, Michael T, and Henard, Calvin A. Thu . "Chapter 8: Metabolic Engineering of Methanotrophic Bacteria for Industrial Biomanufacturing". United States. doi:10.1007/978-3-319-74866-5_8.
@article{osti_1478177,
title = {Chapter 8: Metabolic Engineering of Methanotrophic Bacteria for Industrial Biomanufacturing},
author = {Guarnieri, Michael T and Henard, Calvin A},
abstractNote = {CH4 offers a promising, high-volume petroleum replacement for fuel and chemical bioprocesses. Recent advances in gas recovery technologies have facilitated access to previously inaccessible natural gas reserves, while biogas generated from anaerobic digestion of waste streams offers a versatile, renewable CH4 source. Importantly, CH4 is also the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. However, the gaseous state of CH4 makes for a lack of compatibility with current transportation and industrial manufacturing infrastructure, limiting its utilization as a transportation fuel and intermediate in biochemical processes. Resurgent interest in CH4 upgrading has pushed microbial conversion of CH4 to fuels and value-added chemicals to the forefront of industrial bioprocessing. CH4 bioconversion offers both CH4 valorization and GHG emission reduction potential and importantly offers a scalable, modular, and selective approach to CH4 utilization compared to conventional physical and chemical conversion strategies. However, as noted above, advances in CH4 biocatalysis have been constrained by limited genetic tractability of natural CH4-consuming microbes. In this chapter, we review recent advances in methanotrophic genetic and genomic tool development and metabolic engineering.},
doi = {10.1007/978-3-319-74866-5_8},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {6}
}

Book:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share:

Works referenced in this record:

An updated evolutionary classification of CRISPR–Cas systems
journal, September 2015

  • Makarova, Kira S.; Wolf, Yuri I.; Alkhnbashi, Omer S.
  • Nature Reviews Microbiology, Vol. 13, Issue 11, p. 722-736
  • DOI: 10.1038/nrmicro3569

Phosphoketolase, a Neglected Enzyme of Microbial Carbohydrate Metabolism
journal, June 2002

  • Rohr, Lukas M.; Teuber, Michael; Meile, Leo
  • CHIMIA International Journal for Chemistry, Vol. 56, Issue 6
  • DOI: 10.2533/000942902777680379

Metabolic engineering in methanotrophic bacteria
journal, May 2015


Autotrophic Carbon Dioxide Fixation via the Calvin-Benson-Bassham Cycle by the Denitrifying Methanotroph “Candidatus Methylomirabilis oxyfera”
journal, February 2014

  • Rasigraf, Olivia; Kool, Dorien M.; Jetten, Mike S. M.
  • Applied and Environmental Microbiology, Vol. 80, Issue 8
  • DOI: 10.1128/AEM.04199-13

Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across Diverse Species of Cyanobacteria
journal, December 2016

  • Ungerer, Justin; Pakrasi, Himadri B.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep39681

Draft Genomes of Gammaproteobacterial Methanotrophs Isolated from Terrestrial Ecosystems: TABLE 1
journal, June 2015

  • Hamilton, Richard; Kits, K. Dimitri; Ramonovskaya, Victoria A.
  • Genome Announcements, Vol. 3, Issue 3
  • DOI: 10.1128/genomeA.00515-15

Genomic and Transcriptomic Analyses of the Facultative Methanotroph Methylocystis sp. Strain SB2 Grown on Methane or Ethanol
journal, March 2014

  • Vorobev, Alexey; Jagadevan, Sheeja; Jain, Sunit
  • Applied and Environmental Microbiology, Vol. 80, Issue 10
  • DOI: 10.1128/AEM.00218-14

Draft Genome Sequence of Methylomicrobium buryatense Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium
journal, June 2013


Broad host range vectors for stable genomic library construction
journal, January 2006

  • Lynch, Michael D.; Gill, Ryan T.
  • Biotechnology and Bioengineering, Vol. 94, Issue 1
  • DOI: 10.1002/bit.20836

Industrial biomanufacturing: The future of chemical production
journal, January 2017

  • Clomburg, James M.; Crumbley, Anna M.; Gonzalez, Ramon
  • Science, Vol. 355, Issue 6320
  • DOI: 10.1126/science.aag0804

The structure and mechanism of methanol dehydrogenase
journal, April 2003

  • Anthony, Christopher; Williams, Paul
  • Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol. 1647, Issue 1-2
  • DOI: 10.1016/S1570-9639(03)00042-6

Bioconversion of natural gas to liquid fuel: Opportunities and challenges
journal, May 2014


Autotrophic Methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicumSolV Uses the Calvin-Benson-Bassham Cycle for Carbon Dioxide Fixation
journal, July 2011

  • Khadem, A. F.; Pol, A.; Wieczorek, A.
  • Journal of Bacteriology, Vol. 193, Issue 17
  • DOI: 10.1128/JB.00407-11

Structure and Protein–Protein Interactions of Methanol Dehydrogenase from Methylococcus capsulatus (Bath)
journal, September 2014

  • Culpepper, Megen A.; Rosenzweig, Amy C.
  • Biochemistry, Vol. 53, Issue 39
  • DOI: 10.1021/bi500850j

Homo- and heterologous reporter proteins for evaluation of promoter activity in Methylomicrobium alcaliphilum 20Z
journal, May 2016

  • Mustakhimov, I. I.; But, S. Y.; Reshetnikov, A. S.
  • Applied Biochemistry and Microbiology, Vol. 52, Issue 3
  • DOI: 10.1134/S0003683816030157

Programming cells by multiplex genome engineering and accelerated evolution
journal, July 2009

  • Wang, Harris H.; Isaacs, Farren J.; Carr, Peter A.
  • Nature, Vol. 460, Issue 7257, p. 894-898
  • DOI: 10.1038/nature08187

Metabolic Engineering: Past and Future
journal, June 2013


Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach
journal, February 2018


Recombineering: a homologous recombination-based method of genetic engineering
journal, January 2009

  • Sharan, Shyam K.; Thomason, Lynn C.; Kuznetsov, Sergey G.
  • Nature Protocols, Vol. 4, Issue 2
  • DOI: 10.1038/nprot.2008.227

Use of Transposon Promoter-Probe Vectors in the Metabolic Engineering of the Obligate Methanotroph Methylomonas sp. Strain 16a for Enhanced C40 Carotenoid Synthesis
journal, January 2007

  • Sharpe, P. L.; DiCosimo, D.; Bosak, M. D.
  • Applied and Environmental Microbiology, Vol. 73, Issue 6
  • DOI: 10.1128/AEM.01332-06

Bioconversion of methane to lactate by an obligate methanotrophic bacterium
journal, February 2016

  • Henard, Calvin A.; Smith, Holly; Dowe, Nancy
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21585

Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst
journal, May 2017


Electroporation-Based Genetic Manipulation in Type I Methanotrophs
journal, January 2016

  • Yan, Xin; Chu, Frances; Puri, Aaron W.
  • Applied and Environmental Microbiology, Vol. 82, Issue 7
  • DOI: 10.1128/AEM.03724-15

Enzymatic Oxidation of Methane
journal, March 2015


Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z
journal, December 2011

  • Vuilleumier, S.; Khmelenina, V. N.; Bringel, F.
  • Journal of Bacteriology, Vol. 194, Issue 2
  • DOI: 10.1128/JB.06392-11

Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1
journal, November 2015

  • Gilman, Alexey; Laurens, Lieve M.; Puri, Aaron W.
  • Microbial Cell Factories, Vol. 14, Issue 1
  • DOI: 10.1186/s12934-015-0372-8

Isolation of mutants of the obligate methanotroph Methylomonas albus defective in growth on methane
journal, June 1987

  • McPheat, W. L.; Mann, N. H.; Dalton, H.
  • Archives of Microbiology, Vol. 148, Issue 1
  • DOI: 10.1007/BF00429645

Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09
journal, November 2011

  • Boden, R.; Cunliffe, M.; Scanlan, J.
  • Journal of Bacteriology, Vol. 193, Issue 24
  • DOI: 10.1128/JB.06267-11

Development of a broad-host-range sacB-based vector for unmarked allelic exchange
journal, January 2008


Highly efficient methane biocatalysis revealed in a methanotrophic bacterium
journal, December 2013

  • Kalyuzhnaya, M. G.; Yang, S.; Rozova, O. N.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3785

Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
journal, August 2016

  • Mohanraju, Prarthana; Makarova, Kira S.; Zetsche, Bernd
  • Science, Vol. 353, Issue 6299
  • DOI: 10.1126/science.aad5147

Transcriptomic profiling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases
journal, December 2015

  • Larsen, Øivind; Karlsen, Odd A.
  • MicrobiologyOpen, Vol. 5, Issue 2
  • DOI: 10.1002/mbo3.324

Mutation of the Methane Oxidizing Bacterium, Methylococcus capsulatus
journal, March 1972


Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System
journal, October 2015

  • Zetsche, Bernd; Gootenberg, Jonathan S.; Abudayyeh, Omar O.
  • Cell, Vol. 163, Issue 3, p. 759-771
  • DOI: 10.1016/j.cell.2015.09.038

Bacterial and Eukaryotic Phosphoketolases: Phylogeny, Distribution and Evolution
journal, January 2010

  • Sánchez, Borja; Zúñiga, Manuel; González-Candelas, Fernando
  • Journal of Molecular Microbiology and Biotechnology, Vol. 18, Issue 1
  • DOI: 10.1159/000274310

Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion
journal, July 2016

  • Lawton, Thomas J.; Rosenzweig, Amy C.
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b04568

Phosphoketolase pathway engineering for carbon-efficient biocatalysis
journal, December 2015

  • Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas
  • Current Opinion in Biotechnology, Vol. 36
  • DOI: 10.1016/j.copbio.2015.08.018

Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis
journal, November 1984

  • Lidstrom, Mary E.; Wopat, Ann E.
  • Archives of Microbiology, Vol. 140, Issue 1
  • DOI: 10.1007/BF00409767

CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes
journal, January 2017


Envisioning the Bioconversion of Methane to Liquid Fuels
journal, February 2014


Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems: TABLE 1 
journal, January 2016

  • Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi
  • Genome Announcements, Vol. 4, Issue 1
  • DOI: 10.1128/genomeA.01629-15

Rethinking biological activation of methane and conversion to liquid fuels
journal, April 2014


Methane as a Resource: Can the Methanotrophs Add Value?
journal, March 2015

  • Strong, P. J.; Xie, S.; Clarke, W. P.
  • Environmental Science & Technology, Vol. 49, Issue 7
  • DOI: 10.1021/es504242n

Acetate kinase-an enzyme of the postulated phosphoketolase pathway in Methylomicrobium alcaliphilum 20Z
journal, August 2015

  • Rozova, Olga N.; Khmelenina, Valentina N.; Gavletdinova, Juliya Z.
  • Antonie van Leeuwenhoek, Vol. 108, Issue 4
  • DOI: 10.1007/s10482-015-0549-5

Isolation of methane monooxygenase-deficient mutants from Methylosinus trichosporium OB3b using dichloromethane
journal, March 1987


Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1)
journal, November 2015

  • de la Torre, Andrea; Metivier, Aisha; Chu, Frances
  • Microbial Cell Factories, Vol. 14, Issue 1
  • DOI: 10.1186/s12934-015-0377-3

Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2
journal, July 2008

  • Baani, M.; Liesack, W.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 29
  • DOI: 10.1073/pnas.0702643105

Mutation in the obligate methylotrophs Methylococcus capsulatus and Methylomonas albus
journal, December 1977


Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering
journal, December 2016

  • Garst, Andrew D.; Bassalo, Marcelo C.; Pines, Gur
  • Nature Biotechnology, Vol. 35, Issue 1, p. 48-55
  • DOI: 10.1038/nbt.3718

Genetic Tools for the Industrially Promising Methanotroph Methylomicrobium buryatense
journal, December 2014

  • Puri, Aaron W.; Owen, Sarah; Chu, Frances
  • Applied and Environmental Microbiology, Vol. 81, Issue 5
  • DOI: 10.1128/AEM.03795-14

The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath)
journal, January 2002

  • Baxter, Nardia J.; Hirt, Robert P.; Bodrossy, Levente
  • Archives of Microbiology, Vol. 177, Issue 4
  • DOI: 10.1007/s00203-001-0387-x

Genetics and molecular biology of methanotrophs
journal, June 1992


Quorum Sensing in a Methane-Oxidizing Bacterium
journal, December 2016

  • Puri, Aaron W.; Schaefer, Amy L.; Fu, Yanfen
  • Journal of Bacteriology, Vol. 199, Issue 5
  • DOI: 10.1128/JB.00773-16