skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes

Abstract

Typical lithium-ion battery electrodes are porous composites comprised of active material, conductive additives, and polymeric binder, with liquid electrolyte filling the pores. The mesoscale morphology of these constituent phases has a significant impact on both electrochemical reactions and transport across the electrode, which can ultimately limit macroscale battery performance. We reconstruct published X-ray computed tomography (XCT) data from a NMC333 cathode to study mesoscale electrode behavior on an as-manufactured electrode geometry. We present and compare two distinct models that computationally generate a composite binder domain (CBD) phase that represents both the polymeric binder and conductive additives. We compare the effect of the resulting CBD morphologies on electrochemically active area, pore phase tortuosity, and effective electrical conductivity. Both dense and nanoporous CBD are considered, and we observe that acknowledging CBD nanoporosity significantly increases effective electrical conductivity by up to an order of magnitude. Properties are compared to published measurements as well as to approximate values often used in homogenized battery-scale models. All reconstructions exhibit less than 20% of the standard electrochemically active area approximation. Order of magnitude discrepancies are observed between two popular transport simulation numerical schemes (finite element method and finite volume method), highlighting the importance of careful numerical verification.

Authors:
ORCiD logo; ORCiD logo; ; ; ; ORCiD logo
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1477810
Alternate Identifier(s):
OSTI ID: 1483974
Report Number(s):
SAND-2018-11856J
Journal ID: ISSN 0013-4651; /jes/165/13/E725.atom
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Journal Article: Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 165 Journal Issue: 13; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Batteries; Electrode Kinetics; Mesoscale; Tortuosity; Transport

Citation Formats

Trembacki, Bradley L., Mistry, Aashutosh N., Noble, David R., Ferraro, Mark E., Mukherjee, Partha P., and Roberts, Scott A. Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes. United States: N. p., 2018. Web. doi:10.1149/2.0981813jes.
Trembacki, Bradley L., Mistry, Aashutosh N., Noble, David R., Ferraro, Mark E., Mukherjee, Partha P., & Roberts, Scott A. Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes. United States. doi:10.1149/2.0981813jes.
Trembacki, Bradley L., Mistry, Aashutosh N., Noble, David R., Ferraro, Mark E., Mukherjee, Partha P., and Roberts, Scott A. Tue . "Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes". United States. doi:10.1149/2.0981813jes.
@article{osti_1477810,
title = {Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes},
author = {Trembacki, Bradley L. and Mistry, Aashutosh N. and Noble, David R. and Ferraro, Mark E. and Mukherjee, Partha P. and Roberts, Scott A.},
abstractNote = {Typical lithium-ion battery electrodes are porous composites comprised of active material, conductive additives, and polymeric binder, with liquid electrolyte filling the pores. The mesoscale morphology of these constituent phases has a significant impact on both electrochemical reactions and transport across the electrode, which can ultimately limit macroscale battery performance. We reconstruct published X-ray computed tomography (XCT) data from a NMC333 cathode to study mesoscale electrode behavior on an as-manufactured electrode geometry. We present and compare two distinct models that computationally generate a composite binder domain (CBD) phase that represents both the polymeric binder and conductive additives. We compare the effect of the resulting CBD morphologies on electrochemically active area, pore phase tortuosity, and effective electrical conductivity. Both dense and nanoporous CBD are considered, and we observe that acknowledging CBD nanoporosity significantly increases effective electrical conductivity by up to an order of magnitude. Properties are compared to published measurements as well as to approximate values often used in homogenized battery-scale models. All reconstructions exhibit less than 20% of the standard electrochemically active area approximation. Order of magnitude discrepancies are observed between two popular transport simulation numerical schemes (finite element method and finite volume method), highlighting the importance of careful numerical verification.},
doi = {10.1149/2.0981813jes},
journal = {Journal of the Electrochemical Society},
issn = {0013-4651},
number = 13,
volume = 165,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1149/2.0981813jes

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Theory of Impedance Response of Porous Electrodes: Simplifications, Inhomogeneities, Non-Stationarities and Applications
journal, January 2016

  • Huang, Jun; Zhang, Jianbo
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0901609jes

Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells
journal, January 2007

  • Liu, G.; Zheng, H.; Simens, A. S.
  • Journal of The Electrochemical Society, Vol. 154, Issue 12
  • DOI: 10.1149/1.2792293

Modeling 3D Microstructure and Ion Transport in Porous Li-Ion Battery Electrodes
journal, January 2011

  • Stephenson, David E.; Walker, Bryce C.; Skelton, Cole B.
  • Journal of The Electrochemical Society, Vol. 158, Issue 7
  • DOI: 10.1149/1.3579996

Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
journal, August 2016

  • Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 13, Issue 3
  • DOI: 10.1115/1.4035198

Direct Measurements of Effective Electronic Transport in Porous Li-Ion Electrodes
journal, January 2014

  • Peterson, Serena W.; Wheeler, Dean R.
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0661414jes

Experiment and simulation of the fabrication process of lithium-ion battery cathodes for determining microstructure and mechanical properties
journal, April 2016


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

A Framework for Three-Dimensional Mesoscale Modeling of Anisotropic Swelling and Mechanical Deformation in Lithium-Ion Electrodes
journal, January 2014

  • Roberts, Scott A.; Brunini, Victor E.; Long, Kevin N.
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0081411jes

Transport-Geometry Interactions in Li-Ion Cathode Materials Imaged Using X-ray Nanotomography
journal, January 2017

  • Nelson, George J.; Ausderau, Logan J.; Shin, SeungYoon
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0261707jes

A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes
journal, June 2012


Three-Phase Multiscale Modeling of a LiCoO 2 Cathode: Combining the Advantages of FIB-SEM Imaging and X-Ray Tomography
journal, November 2014

  • Zielke, Lukas; Hutzenlaub, Tobias; Wheeler, Dean R.
  • Advanced Energy Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aenm.201401612

A conformal decomposition finite element method for modeling stationary fluid interface problems
journal, January 2009

  • Noble, David R.; Newren, Elijah P.; Lechman, Jeremy B.
  • International Journal for Numerical Methods in Fluids
  • DOI: 10.1002/fld.2095

Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Lithiation-Induced Dilation Mapping in a Lithium-Ion Battery Electrode by 3D X-Ray Microscopy and Digital Volume Correlation
journal, November 2013

  • Eastwood, David S.; Yufit, Vladimir; Gelb, Jeff
  • Advanced Energy Materials, Vol. 4, Issue 4
  • DOI: 10.1002/aenm.201300506

Tortuosity of Battery Electrodes: Validation of Impedance-Derived Values and Critical Comparison with 3D Tomography
journal, January 2018

  • Landesfeind, Johannes; Ebner, Martin; Eldiven, Askin
  • Journal of The Electrochemical Society, Vol. 165, Issue 3
  • DOI: 10.1149/2.0231803jes

Three-dimensional high resolution X-ray imaging and quantification of lithium ion battery mesocarbon microbead anodes
journal, February 2014


X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes
journal, March 2013

  • Ebner, Martin; Geldmacher, Felix; Marone, Federica
  • Advanced Energy Materials, Vol. 3, Issue 7
  • DOI: 10.1002/aenm.201200932

FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery
journal, February 2013


Morphology of nanoporous carbon-binder domains in Li-ion batteries—A FIB-SEM study
journal, November 2015


Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode
journal, January 2011

  • Kehrwald, Dirk; Shearing, Paul R.; Brandon, Nigel P.
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.079112jes

Conductivity Degradation of Polyvinylidene Fluoride Composite Binder during Cycling: Measurements and Simulations for Lithium-Ion Batteries
journal, January 2016

  • Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0341609jes

A conformal decomposition finite element method for arbitrary discontinuities on moving interfaces: CDFEM FOR ARBITRARY DISCONTINUITIES ON MOVING INTERFACES
journal, June 2014

  • Kramer, Richard M. J.; Noble, David R.
  • International Journal for Numerical Methods in Engineering, Vol. 100, Issue 2
  • DOI: 10.1002/nme.4717

A review of conduction phenomena in Li-ion batteries
journal, December 2010


Insights Into Lithium-Ion Battery Degradation and Safety Mechanisms From Mesoscale Simulations Using Experimentally Reconstructed Mesostructures
journal, August 2016

  • Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 13, Issue 3
  • DOI: 10.1115/1.4034410

Batteries for Electric and Hybrid-Electric Vehicles
journal, June 2010


Quantifying tortuosity in porous Li-ion battery materials
journal, March 2009


A verified conformal decomposition finite element method for implicit, many-material geometries
journal, December 2018

  • Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.
  • Journal of Computational Physics, Vol. 375
  • DOI: 10.1016/j.jcp.2018.08.022

Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode
journal, February 2012

  • Zheng, Honghe; Yang, Ruizhi; Liu, Gao
  • The Journal of Physical Chemistry C, Vol. 116, Issue 7
  • DOI: 10.1021/jp208428w

Mechanistic Understanding of the Role of Evaporation in Electrode Processing
journal, January 2017

  • Stein, Malcolm; Mistry, Aashutosh; Mukherjee, Partha P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1271707jes

Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance
journal, January 2012

  • Liu, G.; Zheng, H.; Song, X.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.024203jes

Mesoscale Effective Property Simulations Incorporating Conductive Binder
journal, January 2017

  • Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0601711jes

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Image based modelling of microstructural heterogeneity in LiFePO 4 electrodes for Li-ion batteries
journal, February 2014


Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy
journal, January 2016

  • Landesfeind, Johannes; Hattendorff, Johannes; Ehrl, Andreas
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1141607jes

Micro-Four-Line Probe to Measure Electronic Conductivity and Contact Resistance of Thin-Film Battery Electrodes
journal, January 2015

  • Lanterman, Bryson J.; Riet, Adriaan A.; Gates, Nathaniel S.
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0581510jes

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide
journal, July 2017


Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode
journal, January 2008

  • Liu, G.; Zheng, H.; Kim, S.
  • Journal of The Electrochemical Society, Vol. 155, Issue 12
  • DOI: 10.1149/1.2976031

A Combination of X-Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO 2 Li-Ion Battery Cathodes
journal, January 2014

  • Zielke, Lukas; Hutzenlaub, Tobias; Wheeler, Dean R.
  • Advanced Energy Materials, Vol. 4, Issue 8
  • DOI: 10.1002/aenm.201301617

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Tortuosity Anisotropy in Lithium-Ion Battery Electrodes
journal, October 2013

  • Ebner, Martin; Chung, Ding-Wen; García, R. Edwin
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201301278

Overcharge Performance of 3,7-Bis(trifluoromethyl)- N -ethylphenothiazine at High Concentration in Lithium-Ion Batteries
journal, October 2015

  • Kaur, Aman Preet; Elliott, Corrine F.; Ergun, Selin
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0951514jes

Visualizing the Carbon Binder Phase of Battery Electrodes in Three Dimensions
journal, July 2018

  • Daemi, Sohrab R.; Tan, Chun; Volkenandt, Tobias
  • ACS Applied Energy Materials, Vol. 1, Issue 8
  • DOI: 10.1021/acsaem.8b00501

Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode
journal, January 2012

  • Shearing, P. R.; Brandon, N. P.; Gelb, J.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.053207jes

Quantitative Characterization of LiFePO 4 Cathodes Reconstructed by FIB/SEM Tomography
journal, January 2012

  • Ender, Moses; Joos, Jochen; Carraro, Thomas
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.033207jes

Mechanical and Electrochemical Response of a LiCoO2 Cathode using Reconstructed Microstructures
journal, February 2016


Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution
journal, May 2016

  • Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26382

Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
journal, January 2018

  • Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 7
  • DOI: 10.1021/acsami.7b17771

Analysis of geometric and electrochemical characteristics of lithium cobalt oxide electrode with different packing densities
journal, October 2016


Current distributions for a two-phase material with chequer-board geometry
journal, February 1983


Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes
journal, December 2014

  • Ebner, Martin; Wood, Vanessa
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0111502jes

Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High-Speed Operando Tomography and Digital Volume Correlation
journal, December 2015

  • Finegan, Donal P.; Tudisco, Erika; Scheel, Mario
  • Advanced Science, Vol. 3, Issue 3
  • DOI: 10.1002/advs.201500332