skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Martian Eolian Dust Probed by ChemCam

Abstract

Here, the ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the sub–mm scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO 2. The dust FeO and TiO 2 contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S, Cl), and the hydrogen content is similar to Bagnold sands, but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils but differences in composition indicate that the two materials are not equivalent.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [7]; ORCiD logo [8];  [1]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11]; ORCiD logo [2] more »;  [1];  [12]; ORCiD logo [2]; ORCiD logo [13];  [14]; ORCiD logo [15]; ORCiD logo [16]; ORCiD logo [17]; ORCiD logo [18] « less
  1. Univ. de Toulouse, Toulouse (France)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Univ. de Lyon, Villeurbanne (France)
  4. Max-Planck-Institut fur Sonnensystemforschung, Gottingen (Germany)
  5. CalTech, Los Angeles, CA (United States)
  6. DLR, Berlin (Germany)
  7. Johns Hopkins Univ., Laurel, MD (United States)
  8. Univ. de Nantes (France)
  9. USGS, Flagstaff, AZ (United States)
  10. NASA JPL, Pasadena, CA (United States)
  11. Space Science Institute, Boulder, CO (United States)
  12. Lorraine Univ., Vandoeuvre (France)
  13. Niels Bohr Institute, Copenhagen (Denmark)
  14. Lulea Univ. of Technology, Lulea (Sweden); Instituto Andaluz de Ciencias de la Tierra (UGR-CSIC), Granada (Spain)
  15. Univ. of Massachusetts, Lowell, MA (United States)
  16. Univ. of New Mexico, Albuquerque, NM (United States)
  17. Museum d'Histoire Naturelle, Paris (France)
  18. Lulea Univ. of Technology, Lulea (Sweden); Centro de Astrobiologia (INTA-CSIC), Madrid (Spain)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Aeronautic and Space Administration (NASA); USDOE
OSTI Identifier:
1477728
Report Number(s):
LA-UR-18-28848
Journal ID: ISSN 0094-8276
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 45; Journal Issue: 20; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Planetary Sciences; Mars; dust; ChemCam

Citation Formats

Lasue, J., Cousin, A., Meslin, P. -Y., Mangold, N., Wiens, Roger Craig, Berger, G., Dehouck, E., Forni, O., Goetz, W., Gasnault, Olivier, Rapin, W., Schröder, S., Ollila, Ann, Johnson, J., Le Mouelic, Stephane, Maurice, Sylvestre, Anderson, R., Blaney, D. L., Clark, B., Clegg, Samuel M., d'Uston, C., Cécile, F., Lanza, Nina Louise, Madsen, M. B., Martín-Torres, J., Melikechi, Noureddine, Newsom, H., Sautter, V., and Zorzano, M. -P. Martian Eolian Dust Probed by ChemCam. United States: N. p., 2018. Web. doi:10.1029/2018GL079210.
Lasue, J., Cousin, A., Meslin, P. -Y., Mangold, N., Wiens, Roger Craig, Berger, G., Dehouck, E., Forni, O., Goetz, W., Gasnault, Olivier, Rapin, W., Schröder, S., Ollila, Ann, Johnson, J., Le Mouelic, Stephane, Maurice, Sylvestre, Anderson, R., Blaney, D. L., Clark, B., Clegg, Samuel M., d'Uston, C., Cécile, F., Lanza, Nina Louise, Madsen, M. B., Martín-Torres, J., Melikechi, Noureddine, Newsom, H., Sautter, V., & Zorzano, M. -P. Martian Eolian Dust Probed by ChemCam. United States. doi:10.1029/2018GL079210.
Lasue, J., Cousin, A., Meslin, P. -Y., Mangold, N., Wiens, Roger Craig, Berger, G., Dehouck, E., Forni, O., Goetz, W., Gasnault, Olivier, Rapin, W., Schröder, S., Ollila, Ann, Johnson, J., Le Mouelic, Stephane, Maurice, Sylvestre, Anderson, R., Blaney, D. L., Clark, B., Clegg, Samuel M., d'Uston, C., Cécile, F., Lanza, Nina Louise, Madsen, M. B., Martín-Torres, J., Melikechi, Noureddine, Newsom, H., Sautter, V., and Zorzano, M. -P. Wed . "Martian Eolian Dust Probed by ChemCam". United States. doi:10.1029/2018GL079210. https://www.osti.gov/servlets/purl/1477728.
@article{osti_1477728,
title = {Martian Eolian Dust Probed by ChemCam},
author = {Lasue, J. and Cousin, A. and Meslin, P. -Y. and Mangold, N. and Wiens, Roger Craig and Berger, G. and Dehouck, E. and Forni, O. and Goetz, W. and Gasnault, Olivier and Rapin, W. and Schröder, S. and Ollila, Ann and Johnson, J. and Le Mouelic, Stephane and Maurice, Sylvestre and Anderson, R. and Blaney, D. L. and Clark, B. and Clegg, Samuel M. and d'Uston, C. and Cécile, F. and Lanza, Nina Louise and Madsen, M. B. and Martín-Torres, J. and Melikechi, Noureddine and Newsom, H. and Sautter, V. and Zorzano, M. -P.},
abstractNote = {Here, the ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the sub–mm scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO2. The dust FeO and TiO2 contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S, Cl), and the hydrogen content is similar to Bagnold sands, but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils but differences in composition indicate that the two materials are not equivalent.},
doi = {10.1029/2018GL079210},
journal = {Geophysical Research Letters},
issn = {0094-8276},
number = 20,
volume = 45,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Comparison of fine dust and soils composition on Mars

Save / Share:

Works referenced in this record:

Independent component analysis classification of laser induced breakdown spectroscopy spectra
journal, August 2013

  • Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 86
  • DOI: 10.1016/j.sab.2013.05.003

Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder
journal, April 1999

  • Tomasko, M. G.; Doose, L. R.; Lemmon, M.
  • Journal of Geophysical Research: Planets, Vol. 104, Issue E4
  • DOI: 10.1029/1998JE900016

Physical properties of the particles composing the Martian dust storm of 1971–1972
journal, April 1977


Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data
journal, March 2015


Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer
journal, April 2012

  • Campbell, John L.; Perrett, Glynis M.; Gellert, Ralf
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9873-5

Overview of the magnetic properties experiments on the Mars Exploration Rovers
journal, January 2009

  • Madsen, M. B.; Goetz, W.; Bertelsen, P.
  • Journal of Geophysical Research, Vol. 114, Issue E6
  • DOI: 10.1029/2008JE003098

New insights into Martian dust distribution and water-ice cloud microphysics
journal, January 2002


Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate
journal, January 2008

  • Ming, D. W.; Gellert, R.; Morris, R. V.
  • Journal of Geophysical Research, Vol. 113, Issue E12
  • DOI: 10.1029/2008JE003195

Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust
journal, July 2005

  • Goetz, Walter; Bertelsen, Preben; Binau, Charlotte S.
  • Nature, Vol. 436, Issue 7047
  • DOI: 10.1038/nature03807

Spectroscopic Identification of Carbonate Minerals in the Martian Dust
journal, August 2003


The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
journal, July 2012


The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers: NEW APXS FOR MER
journal, November 2003

  • Rieder, R.; Gellert, R.; Brückner, J.
  • Journal of Geophysical Research: Planets, Vol. 108, Issue E12
  • DOI: 10.1029/2003JE002150

A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos
journal, January 1995

  • Clancy, R. T.; Lee, S. W.; Gladstone, G. R.
  • Journal of Geophysical Research, Vol. 100, Issue E3
  • DOI: 10.1029/94JE01885

Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover
journal, September 2013


Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions
journal, January 2007

  • McCleese, D. J.; Schofield, J. T.; Taylor, F. W.
  • Journal of Geophysical Research, Vol. 112, Issue E5
  • DOI: 10.1029/2006JE002790

Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow
journal, September 2013


Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra
journal, June 2014

  • Melikechi, N.; Mezzacappa, A.; Cousin, A.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 96
  • DOI: 10.1016/j.sab.2014.04.004

The Medusae Fossae Formation as the single largest source of dust on Mars
journal, July 2018


Chemical composition of Martian fines
journal, January 1982

  • Clark, Benton C.; Baird, Alex K.; Weldon, Ray J.
  • Journal of Geophysical Research, Vol. 87, Issue B12
  • DOI: 10.1029/JB087iB12p10059

Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report: APXS RESULTS FROM GUSEV CRATER
journal, January 2006

  • Gellert, R.; Rieder, R.; Brückner, J.
  • Journal of Geophysical Research: Planets, Vol. 111, Issue E2
  • DOI: 10.1029/2005JE002555

Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity: MCS RETRIEVALS
journal, October 2009

  • Kleinböhl, Armin; Schofield, John T.; Kass, David M.
  • Journal of Geophysical Research: Planets, Vol. 114, Issue E10
  • DOI: 10.1029/2009JE003358

Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument
journal, March 2011

  • Fabre, C.; Maurice, S.; Cousin, A.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 66, Issue 3-4
  • DOI: 10.1016/j.sab.2011.03.012

Hydrogen detection with ChemCam at Gale crater
journal, March 2015


Ceramic ChemCam Calibration Targets on Mars Science Laboratory
journal, May 2012


Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory
journal, June 2012


Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
journal, September 2013


Quantification of water content by laser induced breakdown spectroscopy on Mars
journal, April 2017

  • Rapin, W.; Meslin, P. -Y.; Maurice, S.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 130
  • DOI: 10.1016/j.sab.2017.02.007

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests
journal, June 2012

  • Wiens, Roger C.; Maurice, Sylvestre; Barraclough, Bruce
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9902-4

The Petrochemistry of Jake_M: A Martian Mugearite
journal, September 2013


Magnetic Properties Experiments on the Mars Exploration Rover mission: MAGNETIC PROPERTIES EXPERIMENTS ON MER
journal, December 2003

  • Madsen, M. B.; Bertelsen, P.; Goetz, W.
  • Journal of Geophysical Research: Planets, Vol. 108, Issue E12
  • DOI: 10.1029/2002JE002029

An integrated view of the chemistry and mineralogy of martian soils
journal, July 2005

  • Yen, Albert S.; Gellert, Ralf; Schröder, Christian
  • Nature, Vol. 436, Issue 7047
  • DOI: 10.1038/nature03637

REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover
journal, August 2012


Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity
journal, December 2004


Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover
journal, April 2013

  • Wiens, R. C.; Maurice, S.; Lasue, J.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 82
  • DOI: 10.1016/j.sab.2013.02.003

A global Mars dust composition refined by the Alpha‐Particle X‐ray Spectrometer in Gale Crater
journal, January 2016

  • Berger, Jeff A.; Schmidt, Mariek E.; Gellert, Ralf
  • Geophysical Research Letters, Vol. 43, Issue 1
  • DOI: 10.1002/2015GL066675

X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater
journal, September 2013


Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements
journal, June 2016

  • Mezzacappa, A.; Melikechi, N.; Cousin, A.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 120
  • DOI: 10.1016/j.sab.2016.03.009

Viking Lander image analysis of Martian atmospheric dust
journal, January 1995

  • Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.
  • Journal of Geophysical Research, Vol. 100, Issue E3
  • DOI: 10.1029/94JE02640

Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database
journal, March 2017

  • Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 129
  • DOI: 10.1016/j.sab.2016.12.003

Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES: DUST PROPERTIES-MER-MGS OVERFLIGHTS
journal, December 2006

  • Wolff, M. J.; Smith, M. D.; Clancy, R. T.
  • Journal of Geophysical Research: Planets, Vol. 111, Issue E12
  • DOI: 10.1029/2006JE002786

Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols
journal, January 2005

  • Hamilton, Victoria E.; McSween, Harry Y.; Hapke, Bruce
  • Journal of Geophysical Research, Vol. 110, Issue E12
  • DOI: 10.1029/2005JE002501

ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars
journal, March 2015


The ChemCam Remote Micro-Imager at Gale crater: Review of the first year of operations on Mars
journal, March 2015


Spectral evidence for zeolite in the dust on Mars
journal, March 2004


The Martian surface as imaged, sampled, and analyzed by the Viking landers
journal, January 1989

  • Arvidson, Raymond E.; Gooding, James L.; Moore, Henry J.
  • Reviews of Geophysics, Vol. 27, Issue 1
  • DOI: 10.1029/RG027i001p00039

Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars: In Situ Mineralogy of the Bagnold Dunes
journal, November 2017

  • Achilles, C. N.; Downs, R. T.; Ming, D. W.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 11
  • DOI: 10.1002/2017JE005262

Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian deposits at Gale Crater: ChemCam Results From Bagnold Dunes, Mars
journal, October 2017

  • Cousin, Agnes; Dehouck, Erwin; Meslin, Pierre-Yves
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 10
  • DOI: 10.1002/2017JE005261

Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars: X-ray amorphous components at Gale
journal, December 2014

  • Dehouck, Erwin; McLennan, Scott M.; Meslin, Pierre-Yves
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 12
  • DOI: 10.1002/2014JE004716

Water Abundance of Dunes in Gale Crater, Mars From Active Neutron Experiments and Implications for Amorphous Phases
journal, December 2018

  • Gabriel, T. S. J.; Hardgrove, C.; Czarnecki, S.
  • Geophysical Research Letters, Vol. 45, Issue 23
  • DOI: 10.1029/2018GL079045

APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average: APXS-Bagnold Sands and Gale Soils
journal, December 2017

  • O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 12
  • DOI: 10.1002/2017JE005268

Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater: IGNEOUS MINERALOGY AT BRADBURY RISE
journal, January 2014

  • Sautter, V.; Fabre, C.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 1
  • DOI: 10.1002/2013JE004472

    Works referencing / citing this record:

    Sample Collection and Return from Mars: Optimising Sample Collection Based on the Microbial Ecology of Terrestrial Volcanic Environments
    journal, October 2019

    • Cockell, Charles S.; McMahon, Sean; Lim, Darlene S. S.
    • Space Science Reviews, Vol. 215, Issue 7
    • DOI: 10.1007/s11214-019-0609-7

    Sample Collection and Return from Mars: Optimising Sample Collection Based on the Microbial Ecology of Terrestrial Volcanic Environments
    journal, October 2019

    • Cockell, Charles S.; McMahon, Sean; Lim, Darlene S. S.
    • Space Science Reviews, Vol. 215, Issue 7
    • DOI: 10.1007/s11214-019-0609-7

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.