skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

Abstract

Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

Inventors:
; ; ;
Publication Date:
Research Org.:
Intelligent Material Solutions, Inc., Princeton, NJ (United States); The Trustees of the University of Pennsylvannia, Philadelphia, PA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1476879
Patent Number(s):
10,066,163
Application Number:
15/678,344
Assignee:
Intelligent Material Solutions, Inc. (Princeton, NJ); The Trustees of the University of Pennsylvannia (Philadelphia, PA) CHO
DOE Contract Number:  
SC0002158
Resource Type:
Patent
Resource Relation:
Patent File Date: 2017 Aug 16
Country of Publication:
United States
Language:
English

Citation Formats

Collins, Joshua E., Bell, Howard Y., Ye, Xingchen, and Murray, Christopher Bruce. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly. United States: N. p., 2018. Web.
Collins, Joshua E., Bell, Howard Y., Ye, Xingchen, & Murray, Christopher Bruce. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly. United States.
Collins, Joshua E., Bell, Howard Y., Ye, Xingchen, and Murray, Christopher Bruce. Tue . "Morphologically and size uniform monodisperse particles and their shape-directed self-assembly". United States. https://www.osti.gov/servlets/purl/1476879.
@article{osti_1476879,
title = {Morphologically and size uniform monodisperse particles and their shape-directed self-assembly},
author = {Collins, Joshua E. and Bell, Howard Y. and Ye, Xingchen and Murray, Christopher Bruce},
abstractNote = {Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Sep 04 00:00:00 EDT 2018},
month = {Tue Sep 04 00:00:00 EDT 2018}
}

Patent:

Save / Share:

Works referenced in this record:

Ultrasmall Monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with Enhanced Near-Infrared to Near-Infrared Upconversion Photoluminescence
journal, May 2010

  • Chen, Guanying; Ohulchanskyy, Tymish Y.; Kumar, Rajiv
  • ACS Nano, Vol. 4, Issue 6, p. 3163-3168
  • DOI: 10.1021/nn100457j

Comparative investigation on structure and luminescence properties of fluoride phosphors codoped with Er3+/Yb3+
journal, October 2009

  • Chen, X. P.; Zhang, Q. Y.; Yang, C. H.
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 74, Issue 2, p. 441-445
  • DOI: 10.1016/j.saa.2009.06.040

Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals
journal, February 2007

  • Wang, Leyu; Li, Yadong
  • Chemistry of Materials, Vol. 19, Issue 4, p. 727-734
  • DOI: 10.1021/cm061887m

Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence
journal, December 2006

  • Yi, G. S.; Chow, G. M.
  • Advanced Functional Materials, Vol. 16, Issue 18, p. 2324-2329
  • DOI: 10.1002/adfm.200600053