skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization

Authors:
 [1];  [2];  [1];  [1];  [1];  [1]
  1. IBM Research, AI
  2. Lawrence Livermore National Laboratory
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1476868
Report Number(s):
LLNL-CONF-751658
937461
DOE Contract Number:  
AC52-07NA27344
Resource Type:
Conference
Resource Relation:
Conference: Montreal, null, Canada
Country of Publication:
United States
Language:
English
Subject:
Computer science

Citation Formats

Liu, S, Kailkhura, B, Chen, P, Ting, P, Chang, S, and Amini, L. Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization. United States: N. p., 2018. Web.
Liu, S, Kailkhura, B, Chen, P, Ting, P, Chang, S, & Amini, L. Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization. United States.
Liu, S, Kailkhura, B, Chen, P, Ting, P, Chang, S, and Amini, L. Wed . "Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization". United States. https://www.osti.gov/servlets/purl/1476868.
@article{osti_1476868,
title = {Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization},
author = {Liu, S and Kailkhura, B and Chen, P and Ting, P and Chang, S and Amini, L},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {5}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: