skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode

Abstract

Here, the physiochemical properties of the solid-electrolyte interphase, primarily governed by electrolyte composition, have a profound impact on the electrochemical cycling of metallic lithium. Herein, we discover that the effect of nitrate anions on regulating lithium deposition previously known in ether-based electrolytes can be extended to carbonate-based systems, which dramatically alters the nuclei from dendritic to spherical, albeit extremely limited solubility. This is attributed to the preferential reduction of nitrate during solid-electrolyte interphase formation, and the mechanisms behind which are investigated based on the structure, ion-transport properties, and charge transfer kinetics of the modified interfacial environment. To overcome the solubility barrier, a solubility-mediated sustained-release methodology is introduced, in which nitrate nanoparticles are encapsulated in porous polymer gel and can be steadily dissolved during battery operation to maintain a high concentration at the electroplating front. As such, effective dendrite suppression and remarkably enhanced cycling stability are achieved in corrosive carbonate electrolytes.

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1475484
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Liu, Yayuan, Lin, Dingchang, Li, Yuzhang, Chen, Guangxu, Pei, Allen, Nix, Oliver, Li, Yanbin, and Cui, Yi. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. United States: N. p., 2018. Web. doi:10.1038/s41467-018-06077-5.
Liu, Yayuan, Lin, Dingchang, Li, Yuzhang, Chen, Guangxu, Pei, Allen, Nix, Oliver, Li, Yanbin, & Cui, Yi. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. United States. doi:10.1038/s41467-018-06077-5.
Liu, Yayuan, Lin, Dingchang, Li, Yuzhang, Chen, Guangxu, Pei, Allen, Nix, Oliver, Li, Yanbin, and Cui, Yi. Fri . "Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode". United States. doi:10.1038/s41467-018-06077-5. https://www.osti.gov/servlets/purl/1475484.
@article{osti_1475484,
title = {Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode},
author = {Liu, Yayuan and Lin, Dingchang and Li, Yuzhang and Chen, Guangxu and Pei, Allen and Nix, Oliver and Li, Yanbin and Cui, Yi},
abstractNote = {Here, the physiochemical properties of the solid-electrolyte interphase, primarily governed by electrolyte composition, have a profound impact on the electrochemical cycling of metallic lithium. Herein, we discover that the effect of nitrate anions on regulating lithium deposition previously known in ether-based electrolytes can be extended to carbonate-based systems, which dramatically alters the nuclei from dendritic to spherical, albeit extremely limited solubility. This is attributed to the preferential reduction of nitrate during solid-electrolyte interphase formation, and the mechanisms behind which are investigated based on the structure, ion-transport properties, and charge transfer kinetics of the modified interfacial environment. To overcome the solubility barrier, a solubility-mediated sustained-release methodology is introduced, in which nitrate nanoparticles are encapsulated in porous polymer gel and can be steadily dissolved during battery operation to maintain a high concentration at the electroplating front. As such, effective dendrite suppression and remarkably enhanced cycling stability are achieved in corrosive carbonate electrolytes.},
doi = {10.1038/s41467-018-06077-5},
journal = {Nature Communications},
issn = {2041-1723},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
journal, January 2018


Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

A Microelectrode Study of Lithium Electrokinetics in Poly(ethylene glycol dimethyl ether) and 1,2-Dimethoxyethane
journal, January 1995

  • Xu, Jun
  • Journal of The Electrochemical Society, Vol. 142, Issue 10
  • DOI: 10.1149/1.2049978

Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO 3 -Contained Electrolyte
journal, January 2012

  • Zhang, Sheng S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.002207jes

The electrochemical behaviour of 1,3-dioxolane—LiClO4 solutions—I. Uncontaminated solutions
journal, March 1990


Role of 1,3-Dioxolane and LiNO 3 Addition on the Long Term Stability of Nanostructured Silicon/Carbon Anodes for Rechargeable Lithium Batteries
journal, January 2016

  • Jaumann, Tony; Balach, Juan; Klose, Markus
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.1011603jes

Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate
journal, January 2002

  • Mogi, Ryo; Inaba, Minoru; Jeong, Soon-Ki
  • Journal of The Electrochemical Society, Vol. 149, Issue 12
  • DOI: 10.1149/1.1516770

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Ionic conductivity in Li 3 N single crystals
journal, June 1977

  • Alpen, U. v.; Rabenau, A.; Talat, G. H.
  • Applied Physics Letters, Vol. 30, Issue 12
  • DOI: 10.1063/1.89283

Empirical parameters for donor and acceptor properties of solvents
journal, September 1976


Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution-Deposition Cycles
journal, January 1999

  • Shiraishi, Soshi
  • Journal of The Electrochemical Society, Vol. 146, Issue 5
  • DOI: 10.1149/1.1391818

Anode-Free Rechargeable Lithium Metal Batteries
journal, August 2016

  • Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602353

Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
journal, February 2004


An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF[sub 4]
journal, January 1995

  • Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 142, Issue 2
  • DOI: 10.1149/1.2044000

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Effects of Fluoroethylene Carbonate (FEC) on Anode and Cathode Interfaces at Elevated Temperatures
journal, January 2015

  • Shin, Hosop; Park, Jonghyun; Sastry, Ann Marie
  • Journal of The Electrochemical Society, Vol. 162, Issue 9
  • DOI: 10.1149/2.0071509jes

Enhancement of the Li Conductivity in LiF by Introducing Glass/Crystal Interfaces
journal, January 2012

  • Li, Chilin; Gu, Lin; Maier, Joachim
  • Advanced Functional Materials, Vol. 22, Issue 6
  • DOI: 10.1002/adfm.201101798

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM
journal, November 2017


High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
journal, February 2017


Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


A review of lithium deposition in lithium-ion and lithium metal secondary batteries
journal, May 2014


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Future prospects of the lithium metal anode
journal, September 1997


Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Electrochemical and Infrared Studies of the Reduction of Organic Carbonates
journal, January 2001

  • Zhang, Xuerong; Kostecki, Robert; Richardson, Thomas J.
  • Journal of The Electrochemical Society, Vol. 148, Issue 12
  • DOI: 10.1149/1.1415547

Preparation of PVDF–HFP microporous membrane for Li-ion batteries by phase inversion
journal, March 2006


Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O 2 battery capacity
journal, July 2015

  • Burke, Colin M.; Pande, Vikram; Khetan, Abhishek
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 30
  • DOI: 10.1073/pnas.1505728112

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

A dendrite-suppressing composite ion conductor from aramid nanofibres
journal, January 2015

  • Tung, Siu-On; Ho, Szushen; Yang, Ming
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7152

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

A Highly Reversible Lithium Metal Anode
journal, January 2014

  • Park, Min Sik; Ma, Sang Bok; Lee, Dong Joon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03815

    Works referencing / citing this record:

    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697

    Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendrite‐Free Metallic Lithium Anodes
    journal, June 2019


    Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendrite‐Free Metallic Lithium Anodes
    journal, June 2019


    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697