Surface Electrolyte Interphase Control on Magnetite, Fe3O4, Electrodes: Impact on Electrochemistry
ABSTRACT
In battery systems, a solid electrolyte interphase (SEI) is formed through electrolyte reaction on an electrode surface. The formation of SEI can have both positive and negative effects on electrochemistry. The initial formation of the layer protects the electrode from further reactivity, which can improve both shelf and cycle life. However, if the layer continues to form, it can impede charge transfer, which increases cell resistance and limits cycle life. The role of SEI is particularly important when studying conversion electrodes, since phase transformations which unveil new electroactive surfaces during reduction/oxidation can facilitate electrolyte decomposition. This manuscript highlights recent developments in the understanding and control of SEI formation for magnetite (Fe3O4) conversion electrodes through electrolyte and electrode modification.
- Research Organization:
- Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- DOE Contract Number:
- SC0012673
- OSTI ID:
- 1470272
- Journal Information:
- MRS Advances, Vol. 3, Issue 11; Related Information: m2M partners with Stony Brook University (lead); Brookhaven National Laboratory; Columbia University; Georgia Institute of Technology; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; University of California, Berkeley; University of North Carolina at Chapel Hill; ISSN 2059-8521
- Publisher:
- Materials Research Society (MRS)
- Country of Publication:
- United States
- Language:
- English